1st Semester 2012/13

Homework Set #3

Source coding (Slepien-Wolf and Wyner-Ziv settings)

- 1. Slepian-Wolf for deterministically related sources. Find and sketch the Slepian-Wolf rate region for the simultaneous data compression of (X, Y), where y = f(x) is some deterministic function of x.
- 2. Slepian Wolf for binary sources. Let X_i be i.i.d. Bernoulli(p). Let Z_i be i.i.d. ~ Bernoulli(r), and let **Z** be independent of **X**. Finally, let $\mathbf{Y} = \mathbf{X} \oplus \mathbf{Z} \pmod{2}$ addition). Let **X** be described at rate R_1 and **Y** be described at rate R_2 . What region of rates allows recovery of **X**, **Y** with probability of error tending to zero?

3. Computing simple example of Slepian Wolf

Let (X, Y) have the joint pmf p(x, y)

$$\begin{array}{c|ccc} \mathbf{p}(\mathbf{x},\mathbf{y}) & 1 & 2 & 3 \\ \hline 1 & \alpha & \beta & \beta \\ 2 & \beta & \alpha & \beta \\ 3 & \beta & \beta & \alpha \end{array}$$

where $\beta = \frac{1}{6} - \frac{\alpha}{2}$. (Note: This is a joint, not a conditional, probability mass function.)

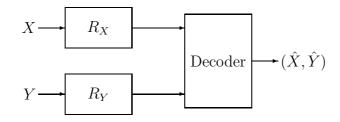
- (a) Find the Slepian Wolf rate region for this source.
- (b) What is $Pr{X = Y}$ in terms of α ?
- (c) What is the rate region if $\alpha = \frac{1}{3}$?
- (d) What is the rate region if $\alpha = \frac{1}{9}$?

4. An example of Slepian-Wolf: Two senders know random variables U_1 and U_2 respectively. Let the random variables (U_1, U_2) have the following joint distribution:

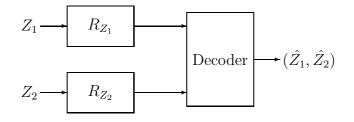
$U_1 \setminus U_2$	0	1	2	•••	m-1
0	α	$\frac{\beta}{m-1}$	$\frac{\beta}{m-1}$	•••	$\frac{\beta}{m-1}$
1	$\frac{\gamma}{m-1}$	0	0	•••	0
2	$\frac{\gamma}{m-1}$	0	0	• • •	0
:	÷	÷	÷	·	:
m-1	$\frac{\gamma}{m-1}$	0	0	•••	0

where $\alpha + \beta + \gamma = 1$. Find the region of rates (R_1, R_2) that would allow a common receiver to decode both random variables reliably.

- 5. Stereo. The sum and the difference of the right and left ear signals are to be individually compressed for a common receiver. Let Z_1 be Bernoulli (p_1) and Z_2 be Bernoulli (p_2) and suppose Z_1 and Z_2 are independent. Let $X = Z_1 + Z_2$, and $Y = Z_1 Z_2$.
 - (a) What is the Slepian Wolf rate region of achievable (R_X, R_Y) ?



(b) Is this larger or smaller than the rate region of (R_{Z_1}, R_{Z_2}) ? Why?



There is a simple way to do this part.

6. Distributed data compression. Let Z_1, Z_2, Z_3 be independent Bernoulli(p). Find the Slepian-Wolf rate region for the description of (X_1, X_2, X_3) where

 Z_3 .

$$X_{1} = Z_{1}$$

$$X_{2} = Z_{1} + Z_{2}$$

$$X_{3} = Z_{1} + Z_{2} +$$

$$X_{2} \longrightarrow (\hat{X}_{1}, \hat{X}_{2}, \hat{X}_{3})$$

$$X_{3} \longrightarrow (\hat{X}_{1}, \hat{X}_{2}, \hat{X}_{3})$$

- 7. Gaussian Wyner-Ziv Show that for a mean square distortion where the source X and Y are jointly Gaussian, the best auxiliary random variable is Gaussian and the distortion is as Y is known to the Encoder.
- 8. Wyner ziv with two decoders and one message Consider the coordination Wyner-Ziv problem, but where the message at rate R reaches two decoders. Assume that there is a degradation of the side information at the decoders, and the first decoder has a side information Y and the second decoder does not have any side information at all. Let \hat{X}_1 be the action taken by Decode 1 and \hat{X}_2 the action taken by Decode 2. Show that in order to achieve a (weak) coordination $P_0(x, y)P(\hat{x}_2|x)P(\hat{x}_1|x, y, \hat{x}_2)$ then

$$R \ge I(X; \hat{X}_2) + I(X; U | X_2, Y) \tag{1}$$

where the joint distribution is of the form $P_0(x, y)P(\hat{x}_2|x)P(\hat{u}|x, y, \hat{x}_2)P(\hat{x}_1|u, x, y, \hat{x}_2)$ with a marginal (summing over u) is the coordination pmf $P_0(x, y)P(\hat{x}_2|x)P(\hat{x}_1|x, y, \hat{x}_2)$. Furthermore, show that if (1) holds for some auxiliary U then there exists a code that achieves a coordination $P_0(x, y)P(\hat{x}_2|x)P(\hat{x}_1|x, y, \hat{x}_2)$.