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Mathematical methods in communication January 10th, 2012

Lecture 9

Lecturer: Haim Permuter Scribe: Moti Teitel

I. INRODUCTION

Lemma 1 f is convex iff g (t) = f (x+ tv) is convex int for all v.

Exercise: Prove Lemma 1.

For example, we examinelog detX, whereX ∈ SN
++. Assume thatV ∈ Sn. Then:

g (t) = log |X+ tV|
(a)
= log

∣

∣X1/2X1/2 + tV
∣

∣ (1)

= log
∣

∣X1/2
(

I+ tX−1/2VX−1/2
)

X1/2
∣

∣

= log
∣

∣X1/2
(

I+ tUΛUT
)

X1/2
∣

∣

= log
∣

∣X1/2U (I+ tΛ)UTX1/2
∣

∣

= log
∣

∣X1/2
∣

∣ |U| |I+ tΛ|
∣

∣UT
∣

∣

∣

∣X1/2
∣

∣

(b)
= log

∣

∣X1/2
∣

∣ |I+ tΛ|
∣

∣X1/2
∣

∣

= log
∣

∣X1/2
∣

∣ + log |I+ tΛ|+ log
∣

∣X1/2
∣

∣

= log |X|+ log |I+ tΛ|

(c)
= log |X|+

∑

log (1 + tλi)

which is concave int, Thereforelog detX is concave inX.

The equality marked by(a) is due to the fact thatX ∈ Sn
++, so we can writeX =

X1/2X1/2.

Equality (b) holds sinceX,V ∈ Sn so X−1/2VX−1/2 ∈ Sn as well, and is therefore

diagonalizable.

Equality (c) follows from the fact thatU is unitary, sodetU = 1.

Equality (d) follows from the fact thatΛ is diagonal.
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II. OPERATIONS THAT PRESERVE CONVEXITY

1) Non-negative weighted sum: if {fi}
N
i=1 are convex, and{wi}

N
i=1 are non-negative

scalars, then
∑

i wifi is convex. This is also true for countably infinite suns, and

for integrals: If for all y ∈ A we havef (x, y) convex inx, andw (y) ≥ 0 for all

y ∈ A, then
∫

A

f (x, y)w (y) dy (2)

is convex inx.

2) pointwise maximum: if f1, f2 are convex, thenmax (f1, f2) is also convex.

Proof:

f
(

θx+ θ̄y
)

= max
(

f1
(

θx+ θ̄y
)

, f2
(

θx+ θ̄y
))

(3)

≤ max
(

θf1 (x) + θ̄f1 (y) , θf2 (x) + θ̄f2 (y)
)

≤ max (θf1 (x) , θf2 (x)) + max
(

θ̄f1 (y) , θ̄f2 (y)
)

= θf (x) + θ̄f (y)

Using this property, we may conclude that the intersection of convex sets is convex.

In order to show this, recall that a function is convex iff it’s epigraph is a convex

set. Letf1 andf2 be the two functions whose epigraphs are the convex setsA and

B respectivally. Since the intersection of the two convex sets A,B is the epigraph

of max (f1, f2), which is convex, it is a convex set.

3) composition with an affine mapping: supposeP : Rn → R, A ∈ R
n+m,b ∈

R
n. Define g : Rm → R by g (x) = f (Ax+ b). The domain ofg is domg =

{x : Ax+ b ∈ domf}. If f is convex theng is convex for allA,b.

Proof:

g
(

θx + θ̄y
)

= f
(

A
(

θx+ θ̄y
)

+ b
)

= f
(

θAx+ θ̄Ay + b
)

(4)

= f
(

θ (Ax+ b) + θ̄ (Ay + b)
)

≤ θf (Ax+ b) + θ̄f (Ay + b)

= θg (x) + θ̄g (y)
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4) Scalar composition(can be extended to a vector space): Giveng : R → R, h : R →

R, definef = h (g (x)).

a) If h is a convex function, non-decreasing, andg is convex, thenf is convex.

b) If h is a convex function, non-increasing, andg is concave, thenf is convex.

c) If h is a concave function, non-increasing, andg is convex, thenf is concave.

d) If h is a concave function, non-decreasing, andg is concave, thenf is concave.

For example, ifg is convex,eg(x) is convex. Ifg is concave and positive,log g (x)

is concave.

Proof: We will prove (a): Sinceh is non-decreasing, we haveh′ ≥ 0. Sinceh

is convex, we haveh′′ ≥ 0. Sinceg is convex, we haveg′′ ≥ 0. So,

[h (g)]′ = h′ (g) g′ (5)

[h (g)]′′ = [h′ (g) g′]
′
= h′′ (g) (g′)

2
+ h′ (g) g′′ ≥ 0

The rest of the properties are proven similarly.

5) Vector composition: f (x) = h (g (x)) = h (g1 (x) , g2 (x) , . . . , gk (x)), where

h : Rk → R, g : Rn → R
k, gi : R

n → R i = 1, 2, . . . , k.

a) If h is a convex function, non-decreasing, andgi are convex for alli, thenf is

convex.

b) If h is a convex function, non-increasing, andgi are concave for alli, thenf is

convex.

c) If h is a concave function, non-increasing, andgi are convex for alli, thenf is

concave.

d) If h is a concave function, non-decreasing, andgi are concave for alli, thenf is

concave.

If h is convex, non-decreasing in each element, andgi are concave for alli, thenf

is convex.
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For n = 1, for example, we have

f ′ (x) = ∇hT (g (x)) g′ (x) , g′ (x) = (g′1 (x) , g
′

2 (x) , . . . , g
′

k (x)) (6)

f ′′ (x) = (g′ (x))
T
∇2h (g (x)) g′ (x) +∇hT (g (x)) g′′ (x)

So if the conditions hold we have thatf ′′ ≥ 0.

The other combinations follow similarly.

6) If f (x, y) is a convex function in(x, y) ∈ C, whereC is a convex set, then

g (x) = inf
y:(x,y)∈C

f (x, y) (7)

is a convex function.

Proof: From the definition of the infimum we have

∀ǫ > 0, ∀x1, x2 ∃y1, y2 : f (xi, yi) ≤ g (xi) + ǫ i = 1, 2. (8)

We may then write, for allǫ > 0,

g
(

θx1 + θ̄x2

)

= inf
y
f
(

θx1 + θ̄x2, y
)

(a)

≤ f
(

θx1 + θ̄x2, θy1 + θ̄y2
)

(9)

≤ θf (x1, y1) + θ̄f (x2, y2)
(b)

≤ θg (x1) + θ̄g (x2) + 2ǫ

where(a) holds asinfy must achieve a lower (or equal) value that any specificy,

in particular than forθy1 + θ̄y2, and(b) follows from Equation 8.

7) Perspective transformations: If f (x) is a convex function, theng (x, t) = tf
(

f
t

)

is also convex in(x, t) for t ≥ 0.

Proof:

g
(

θ (x1, t1) + θ̄ (x2, t2)
)

=
(

θt1 + θ̄t2
)

f

(

θx1 + θ̄x2

θt1 + θ̄t2

)

(10)

=
(

θt1 + θ̄t2
)

f

(

θt1
x1

t1
+ θ̄t2

x2

t2

θt1 + θ̄t2

)

≤
(

θt1 + θ̄t2
)

[

θt1

θt1 + θ̄t2
f

(

x1

t1

)

+
θ̄t2

θt1 + θ̄t2
f

(

x2

t2

)]

= θt1f

(

x1

t1

)

+ θ̄t2f

(

x2

t2

)

= θg (x1, t1) + θ̄g (x2, t2)
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For example, defineP = [p1, p2, . . . , pn] andQ = [q1, q2, . . . , qn] to be probability

distributions, and examineD (P ||Q) =
∑

i pi log
pi
qi
= −

∑

pi log
qi
pi

.

Sincef (x) = − log x is convex, we haveg (x, t) = tf
(

f
t

)

= −t log x
t

convex as

well. Since the sum of convex functions is convex, we may define D (X, T ) =
∑

i g (xi, ti) = −
∑

i ti log
xi

ti
convex. By substitutingX = Q, T = P , we have that

D (P ||Q) = −
∑

pi log
qi
pi

is convex.


