I. NOTATION

- \(\mathbb{R} \): The set of real numbers.
- \(\mathbb{R}_+ \): The set of nonnegative real numbers.
- \(\mathbb{R}_{++} \): The set of positive real numbers.
- \(\mathbb{S}_k \): The set of symmetric \(k \times k \) matrices.
- \(\mathbb{S}_k^+ \): The set of symmetric positive semi-definite \(k \times k \) matrices.
- \(\mathbb{S}_k^{++} \): The set of symmetric positive definite \(k \times k \) matrices.
- \(\text{dom} f \): The domain of the function \(f \). Let \(f : \mathbb{R}^n \to \mathbb{R}^m \), then \(\text{dom} f \triangleq \{ x \in \mathbb{R}^n : f(x) \text{ exists} \} \). For example, \(\text{dom} \log = \mathbb{R}_{++} \)

II. CONVEX OPTIMIZATION

In the previous lecture, we discussed about convex set. This lecture we will continue the discussion about convex set and start discussing about convex functions.

Definition 1 (Supporting hyperplanes) Suppose \(C \subseteq \mathbb{R}^n \), and \(x_0 \) is a point on the boundary of \(C \). If \(a \neq 0 \) satisfies \(a^T x \leq a^T x_0 \) for all \(x \in C \), then the hyperplane \(\{ x \in \mathbb{R}^n : a^T x = a^T x_0 \} \) is called a supporting hyperplane to \(C \) at the point \(x_0 \).

The geometric interpretation is that the hyperplane \(\{ x \in \mathbb{R}^n : a^T x = a^T x_0 \} \) is tangent to \(C \) at \(x_0 \), and the halfspace \(\{ x \in \mathbb{R}^n : a^T x \leq a^T x_0 \} \) contains \(C \). This is illustrated in Fig. 1.

Definition 2 (Dual cones) Let \(K \) be a cone. Then, the set

\[
K^* = \{ y : x^T y \geq 0 \text{ for all } x \in K \},
\]

is called the dual cone of \(K \).
Geometrically, \(y \in K^* \) iff \(-y\) is the normal of a hyperplane that supports \(K \) at the origin. This is illustrated in Fig. 2.

Example 1 (Subspace) The dual cone of a subspace \(V \subseteq \mathbb{R}^n \) is its orthogonal complement \(V^\perp = \{ y : y^T x = 0 \text{ for all } x \in V \} \).

Example 2 (Nonnegative quadrants) The cone \(\mathbb{R}_+ \) is its own dual

\[
y^T x \geq 0 \text{ for all } x \geq 0 \iff y \geq 0. \tag{2}
\]

We shall call such a cone *self-dual*.
In the following, we present equivalent definitions of convex functions, and present some examples of convex functions.

Definition 3 (Convex function) A function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is convex if $\text{dom} f$ is a convex set and if for all $x, y \in \text{dom} f$, and θ with $0 \leq \theta \leq 1$, we have

$$f(\theta x + \bar{\theta} y) \leq \theta f(x) + \bar{\theta} f(y),$$

(3)

where $\bar{\theta} \triangleq 1 - \theta$. A function is strictly convex if strict inequality hold in (3) for $x \neq y$ and $0 < \theta < 1$. Also, we say that f is concave if $-f$ is convex, and strictly concave if $-f$ is strictly convex.

Note that this definition is true also for vectors. Next, we present special criteria to verify the convexity of a function.

Lemma 1 (Restriction of a convex function to a line) The function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is convex iff the function $g : \mathbb{R} \rightarrow \mathbb{R}$,

$$g(t) = f(x + tv) \quad \text{dom} g = \{ t \in \mathbb{R} : x + tv \in \text{dom} f \},$$

(4)

is convex in t for any $x \in \text{dom} f$ and $v \in \mathbb{R}^n$. Therefore, checking convexity of multivariate functions can be carried out by checking convexity of univariate functions.

Example 3 Let $f : \mathbb{S}^n \rightarrow \mathbb{R}$ with

$$f(X) = -\log \det X, \quad \text{dom} f = \mathbb{S}^n_{++}. \quad (5)$$

Then

$$g(t) = -\log \det (X + tV)$$

$$= -\log \det X - \log \det (I + tX^{-1/2}VX^{-1/2})$$

$$= -\log \det X - \sum_{i=1}^{n} \log (1 + t\lambda_i),$$

(6)

where I is the identity matrix and λ_i, $i = 1, \ldots, n$ are the eigenvalues of the matrix $X^{-1/2}VX^{-1/2}$. Since $-\sum_{i=1}^{n} \log (1 + t\lambda_i)$ is convex in t, as sum of convex functions (prove that the inner term of the sum is convex), and because $-\log \det X$ is constant with respect
to t, we have proven that for any choice of V and any $X \in \text{dom} f$, g is convex. Hence f is also convex.

Next, we present first-order conditions which assures that a function is convex.

Lemma 2 (First-order condition) Let $f : \mathbb{R}^n \to \mathbb{R}$ denote a differentiable function, i.e. $\text{dom} f$ is open and for all $x \in \text{dom} f$ the gradient vector

\[
\nabla f(x) \triangleq \left[\frac{\partial f(x)}{\partial x_1}, \ldots, \frac{\partial f(x)}{\partial x_n} \right]^T,
\]

exists. Then f is convex iff $\text{dom} f$ is convex and for all $x, y \in \text{dom} f$

\[
f(y) \geq f(x) + \nabla f(x)^T (y - x).
\]

Remark 1 For $n = 1$ Lemma 2 implies that f is convex iff $f(y) \geq f(x) + f'(x)(y - x)$.

Before we prove this lemma let us interpret it. The r.h.s. of (8) is the first order taylor approximation of $f(y)$ in the vicinity of x. According to (8), the first order taylor approximation in case where f is convex, is a global underestimate of f. This is a very important property used in algorithm designs and performance analysis. The inequality in (8) is illustrated in Fig. 3. In the following, we prove Lemma 2 for the case of $n = 1$. Generalization is straightforward.

![Fig. 3](image-url)

Fig. 3. If f is convex and differentiable, then $f(y) \geq f(x) + \nabla f(x)^T (y - x)$ for all $x, y \in \text{dom} f$.
Proof: Assume first that \(f \) is convex and \(x, y \in \text{dom} f \). Since \(\text{dom} f \) is convex, using the definition, for all \(0 < t \leq 1 \), \(x + t (y - x) \in \text{dom} f \), and by convexity of \(f \),

\[
f (x + t (y - x)) \leq (1 - t) f (x) + tf (y).
\]

If we divide both sides by \(t \), we obtain

\[
f (y) \geq f (x) + \frac{f (x + t (y - x)) - f (x)}{t} (y - x),
\]

and taking the limit as \(t \to 0 \) yields (8).

To show sufficiency, assume the function satisfies (8) for all \(x, y \in \text{dom} f \). Choose any \(x \neq y \), and \(0 \leq \theta \leq 1 \), and let \(z = \theta x + \theta y \). Applying (8) twice yields

\[
f (x) \geq f (z) + f' (z) (x - z), \quad f (y) \geq f (z) + f' (z) (y - z).
\]

Hence

\[
\theta f (x) + \overline{\theta} f (y) \geq \theta f (z) + \theta f' (z) (x - z) + \overline{\theta} f (z) + \overline{\theta} f' (z) (y - z)
\]

\[
= f (z) - z f' (z) + \theta x f' (z) + \overline{\theta} y f' (z)
\]

\[
= f (\theta x + \overline{\theta} y),
\]

which proves that \(f \) is convex.

Now, we present second-order conditions which assures that a function is convex.

Theorem 1 (Second-order conditions) Let \(f : \mathbb{R}^n \to \mathbb{R} \) denote a twice differentiable function, i.e. \(\text{dom} f \) is open and for all \(x \in \text{dom} f \) the Hessian matrix, \(\nabla^2 f (x) \in \mathbb{S}^n \),

\[
\nabla^2 f (x)_{i,j} \triangleq \frac{\partial^2 f (x)}{\partial x_i \partial x_j},
\]

exists. Then \(f \) is convex iff \(\text{dom} f \) is convex and \(\nabla^2 f (x) \succeq 0 \), for all \(x \in \text{dom} f \).

Examples of convex/concave functions

- Convex functions:
 - Affine: \(f (x) = ax + b \) on \(\mathbb{R} \), for any \(a, b \in \mathbb{R} \).
- Exponential: \(f(x) = \exp(ax) \) on \(\mathbb{R} \), for any \(a \in \mathbb{R} \).
- Powers: \(f(x) = x^\alpha \) on \(\mathbb{R}^+ \), for \(\alpha \geq 1 \) or \(\alpha \leq 0 \).
- Powers of absolute values: \(|x|^p \) on \(\mathbb{R} \), for \(p \geq 1 \).
- Negative entropy: \(x \log x \) on \(\mathbb{R}^+ \).
- Norms: Every norm (follows from triangle inequality).
- Max function: \(f(x) = \max\{x_1, \ldots, x_n\} \) on \(\mathbb{R}^n \).
- Quadratic-over-linear function: Let \(f : \mathbb{R}^2 \to \mathbb{R} \), such that
 \[
 f(x, y) = \frac{x^2}{y}. \tag{12}
 \]
 Then
 \[
 \nabla^2 f(x, y) = \frac{2}{y^2} \begin{bmatrix}
 y & -x \\
 -x & \frac{x^2}{y}
 \end{bmatrix}. \tag{13}
 \]
 Therefore, \(f \) is convex for any \(y > 0 \).
- Quadratic function: Let \(f : \mathbb{R}^n \to \mathbb{R} \), such that
 \[
 f(x) = \frac{1}{2} x^T P x + q^T x + r, \tag{14}
 \]
 \(q, r \in \mathbb{R}^n \) and \(P \in \mathbb{S}^n \). Since
 \[
 \nabla f(x) = Px + q, \tag{15}
 \]
 then
 \[
 \nabla^2 f(x) = P. \tag{16}
 \]
 Therefore, if \(P \succeq 0 \) then \(f \) is convex.
- Log-sum-exp: \(f(x) = \log(\exp(x_1) + \cdots + \exp(x_n)) \) on \(\mathbb{R}^n \).

- Concave functions
 - Affine: \(f(x) = ax + b \) on \(\mathbb{R} \), for any \(a, b \in \mathbb{R} \).
 - Powers: \(f(x) = x^\alpha \) on \(\mathbb{R}^+ \), for \(0 \leq \alpha \leq 1 \).
 - Logarithm: \(\log(x) \) is concave on \(\mathbb{R} \) and defined as 0 for \(x = 0 \).
 - Log-determinant: \(f(X) = \log \det(X) \) on \(\mathbb{S}^n_+ \).

REFERENCES