I. CONVEX OPTIMIZATION

In convex optimization, our goal is to minimize an objective a convex function subject to convex inequality and affine equality constraints. The problem can be mathematically written as:

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \leq b_i \quad i = 1, \ldots, k \\
& \quad g_j(x) = 0 \quad j = 1, \ldots, l
\end{align*}
\]

where \(f_0(x) \) and \(\{f_i(x)\}_{i=1}^k \) are convex functions, and \(\{g_j(x)\}_{j=1}^l \) are affine.

Throughout the following lectures, the following notations and definitions will be used:

A. Notations

1) \(\mathbb{R} \) - the set of all real numbers
2) \(\mathbb{R}_+ \) - the set of all non-negative real numbers
3) \(\mathbb{R}_{++} \) - the set of all positive real numbers
4) \(\mathbb{R}^n \) - the set of all real \(n \)-dimensional vectors
5) \(\mathbb{R}^{m \times n} \) - the set of real \(m \times n \) matrices
6) \((a, b, c) \) - a column vector whose elements (by order) are \(a, b \) and \(c \).
7) \((\cdot)^T \) - the transpose operator.
8) \(\mathbf{1} \) - a column vector composed of one’s: \((1, 1, \ldots, 1) \)
9) \(x \) - a vector
10) \(x_i \) - the \(i^{th} \) element of \(x \).
11) \(S^k \) - the set of all (real) symmetric \(k \times k \) matrices: \(S^k = \{ A \in \mathbb{R}^{k \times k} : A^T = A \} \)
12) \(S^+_k \) - the set of all (real) symmetric positive semi-definite (PSD) \(k \times k \) matrices:
 \[S^+_k = \{ A \in S^{k \times k} : S \succeq 0 \} \]
13) \(S^{++}_k \) - the set of all (real) symmetric positive semi-definite (PSD) \(k \times k \) matrices:
 \[S^{++}_k = \{ A \in S^{k \times k} : S \succ 0 \} \]
14) \(x \succeq y \) (vectors) - element-wise inequality: \(\forall i \quad x_i \geq y \)
15) \(A \succeq B \) (matrices) - \((A - B) \in S^+_k \)
16) \(\text{dom}(f) \) - the domain on which \(f \) is defined. For example: \(\log : \mathbb{R} \to \mathbb{R} \), and
 \[\text{dom}(f) = \mathbb{R}_{++} \]
17) \(\bar{\theta} = 1 - \theta \)

Note the difference between the interpretations of inequalities in \(\mathbb{R}^n \) when \(n = 1 \) and \(n > 1 \). As \(\mathbb{R} \) is well-ordered, the elements \(a, b \in \mathbb{R} \) satisfy \(a < b, a = b \) or \(a > b \). However, for \(\mathbb{R}^2 \) the vectors \((0, 1)\) and \((1, 0)\) do not satisfy any of the relations \(<, =, > \).
B. Definitions

Let \(x_1, x_2 \in \mathbb{R}^n \) be two arbitrary vectors. Then:

1) The **line** that goes through \(x_1 \) and \(x_2 \) is the set of all points \(\theta x_1 + \bar{\theta} x_2 \), where \(\theta \in \mathbb{R} \).

 ![A line](Fig. 1. A line)

2) The **line segment** that goes through \(x_1 \) and \(x_2 \) is the set of all points \(\theta x_1 + \bar{\theta} x_2 \), where \(\theta \in [0, 1] \).

 ![A line segment](Fig. 2. A line segment)

3) A set \(C \subseteq \mathbb{R}^n \) is an **affine set** if any line that goes through any two points in \(C \) is contained in \(C \):

 \[
 \forall \theta \in \mathbb{R} : \quad x_1, x_2 \in C \Rightarrow \theta x_1 + \bar{\theta} x_2 \in C.
 \]

4) A set \(C \subseteq \mathbb{R}^n \) is a **convex set** if the line segment that goes through any two points in \(C \) is contained in \(C \):

 \[
 \forall \theta \in [0, 1] : \quad x_1, x_2 \in C \Rightarrow \theta x_1 + \bar{\theta} x_2 \in C.
 \]

 For example, see Figure 3.

 ![To the left: a convex set. To the right: a non-convex set.](Fig. 3)

5) A **convex combination** of \((x_1, x_2, \ldots, x_k) \) is any linear combination \(\sum_{i=1}^{k} \theta_i x_i \), where \(\theta_i \geq 0 \) and \(\sum_{i=1}^{k} \theta_i = 1 \).

6) A **convex hull**, denoted \(\text{Conv}(C) \), is the set of all convex combinations of points in \(C \). A convex hull is the smallest convex set that contains \(C \). For example, in Figure 4, the convex hull of the non-convex set is obtained by adding the area inside the dashed line.

 ![To the left: a convex set. To the right: a non-convex set.](Fig. 4)
7) A set C is called a **cone** if $\forall x \in C$ and $\theta \geq 0$ we have $\theta x \in C$.

8) A cone C is called a **convex cone** if it is convex:
 $\forall \theta_1, \theta_2 \geq 0 : \ x_1, x_2 \in C \Rightarrow \theta_1 x_1 + \theta_2 x_2 \in C$.

9) A **conic combination** of (x_1, x_2, \ldots, x_x) is any linear combination $\sum_{i=1}^{k} \theta_i x_i$, where $\theta_i \geq 0$.

10) A **conic hull** is the set of all conic combinations of points in C.

11) A cone C is called **pointed** if $x \in C$ and $-x \in C$ implies that $x = 0$. This means that the cone C contains no line.

12) A cone $C \subset \mathbb{R}^n$ is called a **proper cone** if the following requirements hold:
 a) C is a convex cone.
 b) C is a closed set.
 c) C has a non-empty interior.
 d) C is pointed.

13) A **ray** is a set of points $\{ x : x = x_0 + \theta y | \theta \geq 0 \}$.

14) A **Hyperplane** is a set $\{ x : a^T x = b \}$, where $a, x \in \mathbb{R}^n$, $a \neq 0$ and $b \in \mathbb{R}$.
 Another possible notation is $\{ x : a^T(x - x_0) = b \}$, where x_0 is any point on the hyperplane (so that $a^T x_0 = b$).
a is called the **normal** to the hyperplane.

15) A **Half-space** is the set of points above (or below) a hyperplane:
\[\{ x : a^T (x - x_0) > b \} \]

16) A **Polyhedra** is the set of points that satisfy a set of linear equalities & inequalities. For instance:

\[
P = \{ x \in \mathbb{R}^n \}
\]

\[
s.t. \begin{cases}
a_i^T x \leq b_i & i = 1, 2, \ldots, K \\
c_j^T x = d_j & j = 1, 2, \ldots, J
\end{cases}
\]

A compact notation is
\[
P = \{ x \in \mathbb{R}^n : Ax = b, Cx = d \}
\]

where \(A = (a_1^T, \ldots, a_K^T) \) and \(C = (c_1^T, \ldots, c_J^T) \).

A Polyhedra is the outcome of an intersection of half-spaces and hyperplanes.

C. Examples

1) The empty set \(\emptyset \), a single point in \(x_0 \in \mathbb{R}^n \) and the entire space are affine.
2) Any line is affine.
3) Any line that passes through the origin is a cone.
4) A line segment is convex, but not affine.
5) A ray is convex but not affine. It is a cone iff \(x_0 = 0 \).
6) A subspace is convex, affine & a cone.

We start with the following lemma regarding convex sets:

Lemma 1 Convexity is preserved under intersections: Let \(S_1, S_2 \) be convex sets. Then \(S_1 \cap S_2 \) is convex.

Exercise: Prove Lemma 1.

Later we will see that if \(f_1(x) \) and \(f_2(x) \) are convex, then \(f(x) = \max(f_1(x), f_2(x)) \) is convex, and we will see that this is equivalent to Lemma 1.

II. Generalized Inequalities

A. Definition

Let \(K \subset \mathbb{R}^n \) be a proper cone. We define the generalized inequality with respect to \(K \) as following:

\[x \preceq_K y \iff x - y \in K \quad (4) \]

B. Properties of the Generalized Inequality

1) The G.I. is preserved under addition: \(x_1 \preceq_K y_1, \ x_2 \preceq_K y_2 \Rightarrow x_1 + x_2 \preceq_K y_1 + y_2 \)
2) The G.I. is transitive: \(a \preceq_K b, \ b \preceq_K c \Rightarrow a \preceq_K c \)
3) The G.I. is preserved under non-negative scaling: \(x \preceq_K y, \ a \geq 0 \Rightarrow ax \preceq_K ay \)
4) The G.I. is reflexive: \(\forall x : \ x \preceq_K x \)
5) The G.I. is preserved under limits: if \(\forall i \ x_i \preceq_K y_i \), and \(x = \lim_{i \to \infty} x_i \) and \(y = \lim_{i \to \infty} y_i \) exist, then \(x \preceq_K y \)

Exercise: Prove properties 1-5.

Theorem 1 Separation Theorem

Let \(C, D \) be two convex sets in \(\mathbb{R}^n \), such that \(C \cap D = \emptyset \). Then, there exists a hyperplane \(a^T (x - x_0) = 0 \) such that:

- \(\forall x \in C : \ a^T (x - x_0) \leq 0 \), and
- \(\forall x \in D : \ a^T (x - x_0) \geq 0 \).

Proof: Assume that \(C, D \) are closed sets. Define the following distance measure:

\[\text{dist} (C, D) \triangleq \min_{u \in C, v \in D} \| u - v \|^2 \quad (5) \]

Let \(c \in C, d \in D \) be the elements that achieve the minimum:

\[\| c - d \|^2 = \text{dist} (C, D) = \min_{u \in C, v \in D} \| u - v \|^2 \quad (6) \]

and let \(a \) be the line connecting \(c, d \) \((a = d - c)\), and \(x_0 = \frac{c + d}{2} \). Define the following functional:

\[f(x) = a^T (x - x_0) = a^T \left(x - \frac{c + d}{2} \right) = (d - c)^T \left(x - \frac{c + d}{2} \right) \quad (7) \]
\[(d - c)^T (x - d + \frac{d - c}{2}) = (d - c)^T (x - d) + \frac{1}{2} \|d - c\|^2 \]

We show that for every \(u \in D \) we have \(f(u) \geq 0 \):
Assume that there exists a vector \(u \in D \) s.t. \(f(u) < 0 \). Then we may write
\[
0 > f(u) = (d - c)^T (u - d) + \frac{1}{2} \|d - c\|^2 > (d - c)^T (u - d) \tag{8}
\]
Define the following function:
\[
g(t) = \|d + t(u - d) - c\|^2 = \|(1 - t) d + tu - c\|^2 \tag{9}
\]
\[
= ((1 - t) d + t(u - d) - c)^T ((1 - t) d + tu - c)
\]
\[
= (d + t(u - d) - c)^T (d + tu - c)
\]
\[
\frac{d}{dt} g(t) = \frac{d}{dt} \left[(d + t(u - d) - c)^T \right] (d + t(u - d) - c) \tag{10}
\]
\[
= (u - d)^T (d + t(u - d) - c) + (d + t(u - d) - c)^T (u - d)
\]
and inspect
\[
\frac{d}{dt} g(t)|_{t=0} = 2 (d - c)^T (u - d) \tag{11}
\]
By (8) we have that
\[
\frac{d}{dt} g(t)|_{t=0} < 0 \tag{12}
\]
so \(g(t) \) is decreasing at \(t = 0 \). If so, there exists a (small) \(t_0 \) s.t. \(0 < t_0 < 1 \) for which \(g(t_0) < g(0) \), so
\[
\|(1 - t_0) d + t_0 u - c\|^2 < \|d - c\|^2 \tag{13}
\]
But since \(D \) is convex, and by assumption we have \(u, d \in D \), we also have \(u' = (1 - t_0) d + t_0 u \in D \). So, we may write
\[
\|u' - c\|^2 < \|d - c\|^2 = \text{dist} (C, D) \tag{14}
\]
which contradicts the assumption that \(c, d \) satisfy the minimum in (6). Therefore we conclude that \(f(u) \geq 0 \) for all \(u \in D \). The proof of \(f(v) \leq 0 \) for all \(v \in C \) follows from similar steps.