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Multi-User Information Theory December 6th, 2011

Lecture 6

Lecturer: Haim Permuter Scribe: Pavel Shanin

I. CUT - SET BOUND

Channel
node i

X(i), Y (i)

node j

X(j), Y (j)

Fig. 1. General multiterminal channel with transmitters and receivers. Where each node has input transmitted variable

X
(i) and a received variableY (i).

Consider a general multiterminal network with transmitters and receivers as depicted

in Fig. 1. We derive upper bounds on the achievable rates for any multiterminal network.

Definition 1 A general multiterminal network withm nodes consists of:

• X
(i)
k - denote an output variable of node(i) at timek, Y (i)

k - denote an input variable

of node(i) at timek.

• Memoryless channel with transition functionP (y
(1)
k , y

(2)
k , ..., y

(m)
k |x

(1)
k , x

(2)
k , ..., x

(m)
k )

• mij ∈ {1, ..., 2nRij} is a message that goes from nodei to nodej at rateRij.

• all messagesmij i ∈ {1, ..., m}, j ∈ {1, ..., m}, are uniformly distributed and

independent of each other.

Definition 2 An encoding scheme of block lengthn for general multiterminal network

consists of a set of encoding and decoding functions. For node i ∈ {1, ..., m} we have:



6-2

• Encoders: X
(i)
k (mi1, ..., mim, Y

(i)
1 , Y

(i)
2 , ..., Y

(m)
k−1 ) - the encoder maps the messages

and past received symbols.

• Decoders: The decoderj at nodei maps the received symbols in each block and

his own transmitted information to form estimates of the messages intended for

him from nodej ∈ {1, ..., m}: m̂(ji)(Y
(i)
1 , ..., Y

(i)
n , mi1, ..., mim)

• The probability of error for every pair of nodes are:Pe(ij) = Pr(Mij 6=

M̂ij(Y
(j),n, mj1, ..., mjm))

Definition 3 Achievable region{Rij}
m,m
i=1,j=1, if

∑m,m

i=1,j=1 Pe(ij) → 0 asn → ∞

S Sc

X(1), Y (1)

Fig. 2. General Multiterminal Network with a cut-set bound which divides the nodes into two setsS andSc.

In the Fig. 2 a cut-set bound divides the nodes into two sets,S andSc -the complement

set.

Theorem 1 If {Rij}
m,m
i=1,j=1 are achievable, then there exists some joint probability

distribution p(xS, xSc

), wherexS - denote the input symbols in the set S, andxSc

-

denote the input symbols in the complement setSc, such that

∑

i∈S,j∈Sc

Rij ≤ I(X(S); Y (Sc)|X(Sc)) (1)

for all possible S, where Y is given by channel.
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Proof: We will defineT = {mlj}l∈S,j∈Sc all the messages that are sent fromS to

Sc.

n
∑

l∈S,j∈Sc

Rlj

(a)
= H(T )

(b)
= H(T |T c)

= H(T |T c)−H(T |T c, Y (Sc),n) +H(T |T c, Y (Sc),n)

(c)

≤ I(T ; Y (Sc),n|T c) + nεn

(d)
=

n∑

i=1

I(T ; Y
(Sc)
i |T c, Y (Sc),i−1) + nεn

(e)

≤

n∑

i=1

I(T , Y (Sc),i−1; Y
(Sc)
i |T c, Y (Sc),i−1) + nεn

(f)
=

n∑

i=1

I(T , Y (Sc),i−1, X
(s)
i ; Y

(Sc)
i |T c, Y (Sc),i−1, X

(Sc)
i ) + nεn

=

n∑

i=1

H(Y
(Sc)
i |T c, Y (Sc),i−1, X

(Sc)
i )−H(Y

(Sc)
i |T c, Y (Sc),i−1, X

(Sc)
i , T , Y (Sc),i−1, X

(s)
i )

+ nεn
(g)

≤
n∑

i=1

H(Y
(Sc)
i |X

(Sc)
i )−H(Y

(Sc)
i |X

(Sc)
i , X

(S)
i ) + nεn

Where:

(a) - follows from the fact that the messagesmij are uniformly distributed over

{1, 2, ..., 2nRij}.

(b) - from the independence of the messages.

(c) - Fano’s inequalityH(Pe) + Pe log2(|(T )| − 1) ≥ H(T |T̂ )

H(T |T c, Y (Sc),n) ≤ H(T |Y (Sc),n)

= H(T |Y (Sc),n, T̂ = g(Y (Sc),n)) ≤ H(T |T̂ ) ≤ nεn(Pe)

Whereεn(Pe) → 0 asn → ∞

(d) - chain rule.

(e) - follows from the properties of mutual information.
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(f) - X
(Sc)
i (T c, Y (Sc),i−1), X(S)

i (T , Y (S),i−1)

(g) - follows from Markov chain(Y (m),i−1, X(m),i−1, T c, T )−X
(m)
i −Y

(m)
i and properties

of entropy.
∑

l∈S,j∈Sc

Rlj

(a)

≤
1

n

n∑

i=1

I(XS
i ; Y

Sc

i |XSc

i )

(b)
=

n∑

i=1

P (Q = 1)I(XS
Q; Y

Sc

Q |XSc

Q , Q = i)

(c)
= I(XS

Q; Y
Sc

Q |XSc

Q )

≤ H(Y Sc

Q |XSc

Q , Q)−H(Y Sc

Q |XS
Q, X

Sc

Q , Q)

(d)

≤ H(Y Sc

Q |XSc

Q )−H(Y Sc

Q |XS
Q, X

Sc

Q )

= I(XS
Q; Y

Sc

Q |XSc

Q )

Where:

(a) - follows from the Fano’s inequality

(b) - We introduce a new random variableQ, distributedQ ∼ Unif(1, ..., n), P (Q) = 1
n
,

and is independent ofXS, XSc

andY Sc

.

(c) - expectation

(d) - properties of entropy and the fact that the channel isP (yS
c

Q |xS
Q, x

Sc

Q ) =

P (yS
c

i |xS
i , x

Sc

i , Q = i) and thereforeY Sc

Q depends only on the inputsXS
Q andXSc

Q and is

conditionally independent ofQ.

Remark 1 The cut set doesn’t provide information about joint probability distribution

P (xS, xSc

).

Example 1 Relay Channel

In Lecture 4 we saw that the upper bound for this channel is:

C ≤ max
p(x,x1)

min (I(X ; Y, Y1|X1), I(X,X1; Y )) (2)

Using cut-set bound 1 we get:

For the following cutting lines in Fig. 3 we have:
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Tx, X Rx, Y

X1, Y1 Re
(3)

(1) (2)

Fig. 3. Cut set for Relay Channel

1) For the cut set(1) we have:R ≤ I(X ; Y, Y1|X1)

2) For the cut set(2) the rate is:R ≤ I(X,X1; Y )

3) For the cut set(3): R = 0 From the definition of rateRij =
logmij

n
= 0 no messages

are sent from relay.

For some distributionp(x, x1)p(y|x, x1).

Example 2 MAC - Multiple Access Channel

In this example two senders are send to base station. For the following cutting lines

in Fig. 5 we have:

1) R13 ≤ I(X1; Y |X2)

2) R23 ≤ I(X2; Y |X1)

3) R13 +R23 ≤ I(X1, X2; Y )

Note: It is worth noting that cut-set bound are not always achievable. The cut-set
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m1 ∈ {1, ..., 2nR1}

m2 ∈ {1, ..., 2nR2}

En1

En2

X1(m1)

X2(m2)

p(y|x1, x2)
Y De m̂1, m̂2

Fig. 4. MAC Channel

X1

X2

Y

(2)

(1)

(3)

Fig. 5. Cut set for MAC Channel

bound for multiple access channel takes the same form as the capacity, but fails to

provide a restriction on the independence of the input distribution p(x1, x2)p(y|x1, x2).

The multiple access channel capacity region is defined with the input distribution of the

form p(x1)p(x2)p(y|x1, x2).

II. RELAY CHANNEL - DECODE AND FORWARD VIA BINNING

We saw in previous lectures and in Example 1 that for relay channel we have:

Upper bound:

C ≤ max
p(x,x1)

min (I(X ; Y, Y1|X1), I(X,X1; Y )) (3)

We will prove the lower bound with decode and forward via binning:

Theorem 2 [Decode and Forward via binning]

R ≤ max
p(x,x1)

min (I(X ; Y1|X1), I(X,X1; Y )) (4)
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M
Encoder

Xn

p(y, y1|x, x1)
Y n

Decoder
M̂

Relay Enc.

Xn
1 Y n

1

Fig. 6. Relay Channel

Proof: We will use Block Markov coding. Encoding is performed in B blocks each

of length n andb ∈ {1, ..., B} is a block index. We generate a separate code book for

each block. The idea is that in each blockb we decode messagemb and it’s bin number

lb and forwarding the bin number to the next blockb+ 1. (In block b+ 1, we uselb as

a super bin number in order to decodemb+1.)

lb - is the function ofmb, that is sent cooperatively by both senders in blockb + 1 to

help the receiver decode the messagemb+1.

Code design(for block b): Fix p(x, x1) that achieves the lower bound. Randomly and

independently generate2nR
′

sequencesxn
1 (lb−1) ∼ p(xn

1 (lb−1)) =
∏n

i=1 PX1(x1i). In block

b = 1, lb−1 = l0 = 1. lb−1 ∈ {1, ..., 2nR
′

} - is the index of superbin.

For eachxn
1 (lb−1) superbin generate2nR sequencesxn(mb|lb−1), mb ∈ {1, ..., 2nR}

according toP (xn) =
∏n

i=1 PX|X1(xi|x1i). And they are further uniformly divided into

2nR
′

equal size bins. In each bin there are2n(R−R′) codewords.

Remark 2 In each supebin we have the same division of messages into bins, that means

that if we knowmb ∈ {1, ..., 2nR} we also knowl ∈ {1, ..., 2nR
′

} - the index of bin. In

other words we can findl from mb(l) ∈ B(l) = [(l − 1)2n(R−R′) + 1 : l2n(R−R′)].

Encoder: In block b sendsxn(mb|lb−1), that meansmb is sent from superbinlb−1.
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2nR
′

- super bins

Xn
1 (1) Xn

1 (2) Xn
1 (2

nR′

)

2nR
′

- bins2n(R−R′) - messages

xn(m1|1) xn(m1|2)

Fig. 7. Distribution of Codewords in Super Bins and Bins in Relay Channel

2nR
′

2nR

xn
1 (lb−1)− Superbins xn(mb|lb−1)

There are2n(R−R′) - messages in each bin

Fig. 8. Coding scheme of Block Markov Coding ,Decode and Forward via Binning. For each codewordxn
1 generate

2nR sequencesxn(mb|lb−1) and divide them into bins

Relay Encoder: In block b: Assumem̃b−1 - estimation ofmb−1 in relay is known,

therefore we knowlb−1(m̃b−1) = l̃(mb−1). (another notatioñmb−1 ∈ B(l̃b−1)). The relay

transmitsxn
1 (l̃b−1).

Relay Decoder: Upon receivingyn1b declares at the end of blockb that m̃b is sent if it

is the unique message such that:
(

Xn(m̃b|l̃b−1), X
n
1 (l̃b−1), Y

n
1b

)

∈ T (n)
ǫ (X,X1, Y ) (5)

Decoder: First assume that in blockb − 1 we know l̂b−2 - that was estimated in the

block b− 2. At the end of blockb− 1 it looks for m̂b−1 such that:
(

Xn(m̂b−1|l̂b−2), X
n
1 (l̂b−2), Y

n
b−1

)

∈ T (n)
ǫ (X,X1, Y ) (6)
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and m̂b−1 ∈ B(l̂b−1).

Upon receivingynb the receiver declares thatl̂b−1 is sent if:
(

Xn
1 (l̂b−1), Y

n
b

)

∈ T (n)
ǫ (X1, Y ) (7)

It usesl̂b−1 in block b for decodingm̂b.

Relay En.

En.

Reley Dec.

Dec.

1

xn
1 (1)

xn(m1|1)

–

l̂1 = 1

b

xn
1 (l̃b−1)

xn(mb|lb−1)

finds m̃b, l̃b

estimateŝlb−1

and m̂b−1

Fig. 9. Encoding and decoding in Relay Channel for blocks 1 and b are explained with the help of the table.

Analysis of probability of error: Assume without loss of generality that

(Lb−2, Lb−1,Mb, L̃b−1) = (1, 1, 1, 1) , where l̃b−1 is the relay estimate oflb−1. We can

assume see Lecture 5, that there are no errors in the blocks that were decoded previously

to block b.

We define the following events:

E1 =
{

(Xn(1|1), Xn
1 (1), Y

n
1b) /∈ T (n)

ǫ

}

, (8)

E2,j =
{

∃m̃b = j, j 6= 1 : (Xn(j|1), Xn
1 (1), Y

n
1b) ∈ T (n)

ǫ

}

, (9)

E3 =
{

(Xn
1 (1), Y

n
b ) /∈ T (n)

ǫ

}

, (10)

E4,j =
{

∃l̃b−1 = j, j 6= 1 : (Xn
1 (j), Y

n
b ) ∈ T (n)

ǫ

}

, (11)

E5 =
{

(Xn(1|1), Xn
1 (1), Y

n
b−1) /∈ T (n)

ǫ

}

, (12)

E6,j =
{

∃m̂b−1 = j, j 6= 1 : (Xn(j|1), Xn
1 (1), Y

n
b−1) ∈ T (n)

ǫ , m̂b−1 ∈ B(L̂b−1)
}

,(13)

E7,j =
{

∃l̂b−1 = j, j 6= 1 : (Xn
1 (j), Y

n
b ) ∈ T (n)

ǫ

}

.
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(14)

By the union bound of events:

P (n)
e = Pr(E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5 ∪ E6 ∪ E7)

≤

7∑

i=1

P (Ei).

We find the probability of error of each event:

• For P (E1) → 0, P (E3) → 0 andP (E5) → 0 asn → ∞ by L.L.N.

• In order to bound the second term in the last equation, we willuse properties of joint

typical sequences. When we know thatY n
1 is generated according to∼ p(y1|x1) and

xn is generated according to∼ p(x|x1). We will look at the probability thatY n
1 is

jointly typical with xn. The probability of this event is bounded by:

Pr(∪jE2,j) ≤

2nR
∑

j=2

P (E2,j)

≤
2nR
∑

j=2

∑

(x,x1,y)∈T
(n)
ǫ

p(x, x1, y)

≤
2nR
∑

j=2

2n(H(X,X1,Y )+ǫ)
︸ ︷︷ ︸

Number of elements in T
(n)
ǫ

p(x, x1)p(y1|x1)

≤

2nR
∑

j=2

2n(H(X,X1,Y )+ǫ)2−n(H(X,X1)−ǫ)2−n(H(Y1|X1)−ǫ)

≤
2nR
∑

j=2

2−n(I(X;Y1|X1)−3ǫ)

= 2nR2−n(I(X;Y1|X1)−δǫ).

R < I(X ; Y1|X1)− δ(ǫ) andδ(ǫ) → 0 asn → ∞.

• In order to bound the forth term in the last equation, we will use properties of

joint typical sequences. When we look at the probability that yn, which is generated
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according to∼ p(y), is jointly typical with xn
1 , which is generated according to

∼ p(x1). The probability of these event is bounded by:

Pr(∪jE4,j) ≤
2nR′

∑

j=2

P (E4,j)

≤
2nR′

∑

j=2

2−n(I(X1;Y )−δ(ǫ))

= 2nR
′

2−n(I(X1;Y )−δ(ǫ)).

R′ < I(X1; Y )− δ(ǫ) andδ(ǫ) → 0 asn → ∞.

• In order to bound the six term in the last equation, we look at the probability that

yn, which is generated according to∼ p(y|x1), is jointly typical with xn which is

generated according to∼ p(x|x1) wherexn
1 ∈ T

(n)
ǫ . Because in block b-1 decoder

know l̂b−1 from (7), the bin are known and in each bin there are2n(R−R′) messages.

The probability of this event is bounded by:

Pr(∪jE6,j) ≤
2n(R−R′)
∑

j=2

P (E6,j)

≤
2n(R−R′)
∑

j=2

2−n(I(X;Y |X1)−δ(ǫ))

= 2n(R−R′)2−n(I(X;Y |X1)−δ(ǫ)).

R− R′ < I(X ; Y |X1)− δ(ǫ) andδ(ǫ) → 0 asn → ∞.

• For the seventh term, similar to the forth term we become:R′ < I(X1; Y ) − δ(ǫ)

andδ(ǫ) → 0 asn → ∞.



6-12

Therefore we have the following bounds:






R′ ≤ I(X1; Y )

R ≤ R′ − I(X ; Y |X1)

R ≤ I(X ; Y |X1)

(15)

By using Fourier Motskin elimination (see Lecture 4) from first two equations of (15)

we become:

I(X1; Y ) ≥ R− I(X ; Y |X1) (16)

R ≤ I(X1; Y ) + I(X ; Y |X1) = I(X,X1; Y ) (17)

From last equation of (15) and (17):

R ≤ max
p(x,x1)

min (I(X ; Y1|X1), I(X,X1; Y )) (18)

This completes the proof of achievability.

REFERENCES

[1] T. M. Cover and J. A. Thomas,‘Elements of Information Theory‘. Wiley, New York, 2nd edition 2006

[2] T. M. Cover and A. El Gamal,‘Capacity theorems for the relay channel‘. IEEE Trans. Inf. Theory, vol. 25, no.

5, pp. 572-584, Sept. 1979.


