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Multi-User Information Theory December 6th, 2011

Lecture 6

Lecturer: Haim Permuter Scribe; Pavel Shanin

. CUT - SET BOUND
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Fig. 1. General multiterminal channel with transmitterd aeceivers. Where each node has input transmitted variable

X® and a received variablg (9.

Consider a general multiterminal network with transmgtand receivers as depicted

in Fig. 1. We derive upper bounds on the achievable ratesnipmnaultiterminal network.

Definition 1 A general multiterminal network witl nodes consists of:

. X" - denote an output variable of nodd at timek, ¥, - denote an input variable
of node(7) at timek.

. Memoryless channel with transition functign(y\", 4>, .. 4™ |2V 2@ 2™

« my; € {1,...,2"%} is a message that goes from naod® node; at rateR;;.

o all messagesn;; ¢« € {1,..,m},j € {1,..,m}, are uniformly distributed and

independent of each other.

Definition 2 An encoding scheme of block lengthfor general multiterminal network

consists of a set of encoding and decoding functions. Foe nad{1, ..., m} we have:
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. Encoders: X7 (myy, ..., mam, Y7, Y, V™) - the encoder maps the messages
and past received symbols.

« Decoders. The decoder; at nodei maps the received symbols in each block and
his own transmitted information to form estimates of the sages intended for

him from nodej € {1,...,m}: MmUY, . YD mr, oo, mim)

. The probability of error for every pair of nodes ar@e() = Pr(M;; #
Mi~(Y(j)’”,mj1,...,mjm))

Definition 3 Achievable region{ R;; }/27",_,, if 27", Pe¥) — 0 asn — oo

i=1,j=1>

Fig. 2. General Multiterminal Network with a cut-set boundigh divides the nodes into two sefsand S°.

In the Fig. 2 a cut-set bound divides the nodes into two sets)dS¢ -the complement

set.

Theorem 1 If {R;;};>",_, are achievable, then there exists some joint probability
distribution p(2°, 2°°), wherez® - denote the input symbols in the set S, and -

denote the input symbols in the complement S&tsuch that

> Ry <I(X®;y®Y

i€S,jeSe

XE) 1)

for all possible S, where Y is given by channel.
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Proof: We will define7 = {my;}ics jes- all the messages that are sent frohto
Se.

n Y R, < HT)

lesS,jese
© H(TIT)
= H(T|T®) - H(T|T,Y ") + H(T|T*, Y®™)
(©) ‘
< I(T; Y™ T + ne,
N HTY T YY) e,
=1
(0 Ny c ¢).i
< Y ITYEYENT YO e,
=1
v Z [T,y S0t Xy S 7e y 91 x59) 4 pe,
— ZH 5)|Tc (59),i-1 X( )) (Y(S 17e, Y y(89)i-1 X TYSC)Z 1 X(s))
+ nen
( ) C C C (&
£ S AN = HOLTX X 4 e
Where:

(a) - follows from the fact that the messages; are uniformly distributed over
{1,2,..., 2"},

(b) - from the independence of the messages.

(c) - Fano's inequalityH (P.) + P.log,(|(T)| — 1) > H(T|T)

H(T|Te,yEm) < H(T|Yy®E)m)
= H(T|YS)" T = g(vS)I™)) < H(T|T) < nen(P.)

Wheree, (P.) — 0 asn — oo
(d) - chain rule.

(e) - follows from the properties of mutual information.
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(f) - X (se )(Tc 5),i—1 ) X(S)(T Y(S),ifl)
(g) - follows from Markov chain(y (m-i=1, x(m:i-1 e 7y _ x™ _y ™ and properties

of entropy.

> R, < —Z]XS V| X5

leS,jese
o ZP(@:1>I<X5; 5.Q =)
=1

(© e

= I(X5; )

< H(ch\ch, Q) — H(ch\xg,ch,Q)
(d) . e .

< H(YS|X5) - H( 5 X5 )

= I(X&YQSC|XQC)
Where:

(a) - follows from the Fano’s inequality

(b) - We introduce a new random varialile distributed@ ~ Unif(1,...,n), P(Q) = %
and is independent ok®, X°° andY*°.

(c) - expectation

(d) - properties of entropy and the fact that the channelPigg |z, z5)) =
P(y7"|xf, 7", Q = i) and therefore’S" depends only on the inpuf§; and X5 and is
conditionally independent af. [ |

Remark 1 The cut set doesn’t provide information about joint prohigbiistribution
P(z%,25).

Example 1 Relay Channel

In Lecture 4 we saw that the upper bound for this channel is:

C' < max min ((X;Y,V11X1), (X, X1;Y)) 2)

p(z,x1)
Using cut-set bound 1 we get:

For the following cutting lines in Fig. 3 we have:
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Fig. 3. Cut set for Relay Channel

1) For the cut setl) we have:R < I(X;Y, Y1]X1)
2) For the cut sef2) the rate is:R < I(X, X;;Y)

_ log m;

3) For the cut set3): R = 0 From the definition of rate?;; = =~ = 0 no messages

are sent from relay.

For some distribution(z, z1)p(y|x, z1).

Example 2 MAC - Multiple Access Channel

In this example two senders are send to base station. Foologviihg cutting lines
in Fig. 5 we have:

1) Rz < I(Xy;Y[X2)

2) Rz < I(Xo;Y[X))

3) Riz + Ry3 < I(X1, XpY)

Note: It is worth noting that cut-set bound are not alwaysiewxdble. The cut-set
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Fig. 4. MAC Channel
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Fig. 5. Cut set for MAC Channel

bound for multiple access channel takes the same form asdpacity, but fails to
provide a restriction on the independence of the input ibigtion p(x1, z2)p(y|zy, z2).

The multiple access channel capacity region is defined \wighiriput distribution of the

form p(z1)p(z2)p(y|21, v2).

II. RELAY CHANNEL - DECODE AND FORWARD VIA BINNING

We saw in previous lectures and in Example 1 that for relaynobawe have:
Upper bound:
C < max min (/(X;Y,Y11X1), I(X, X1;Y)) (3)

p(z,1)

We will prove the lower bound with decode and forward via lomgn

Theorem 2 [Decode and Forward via binning]

R < max min (/(X; Y1 X1), [(X, X1;Y)) 4)

p(z,71)
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Relay Enc.
A
X7 Yy
A 4
M Xn y™n M
— Encoder * oy, y1|z, 1) > Decoder —

Fig. 6. Relay Channel

Proof: We will use Block Markov coding. Encoding is performed in Bbtks each
of length n andb € {1, ..., B} is a block index. We generate a separate code book for
each block. The idea is that in each bldclwe decode message, and it's bin number
I, and forwarding the bin number to the next bldck 1. (In block b + 1, we usel, as
a super bin number in order to decoadg,.)
I, - is the function ofm,, that is sent cooperatively by both senders in bléck 1 to

help the receiver decode the messagg; .

Code design(for block b): Fix p(z,x;) that achieves the lower bound. Randomly and
independently generag®® sequences?(l,_;) ~ p(z?(l,-1)) = [['—, Px,(z1:). In block
b=1,l_y =1lp=1. 1, € {1,...,2""} - is the index of superbin.

For eachz’(l, ;) superbin generate"® sequencest”(mylly_1), my € {1,...,2"%}
according toP(z") = [[_; Px|x, (zi|z1;). And they are further uniformly divided into

27" equal size bins. In each bin there &&f~ %) codewords.

Remark 2 In each supebin we have the same division of messages irdptbat means
that if we knowm,, € {1, ...,2"f} we also knowl € {1, ...,2"%} - the index of bin. In
other words we can find from my(1) € B(l) = [(1 — 1)2"F-R) 4 1 . j2n(R=F)],

Encoder: In block b sendsc™(myl|l,—1), that meansn, is sent from superbit,_;.
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Fig. 7. Distribution of Codewords in Super Bins and Bins indgeChannel
onR onR

There are2"i-F) - messages in eact

x?(lb—l) — Superbins J;n(mb’lb—l)

Fig. 8. Coding scheme of Block Markov Coding ,Decode and Bodwia Binning. For each codeword’ generate

2% sequences” (my|l,—1) and divide them into bins

Relay Encoder: In block b: Assumem,_; - estimation ofm,_; in relay is known,
therefore we know,_,(1,_1) = I(my_1). (@nother notationn,_; € B(l,_1)). The relay
transmitsz? (I, ).

Relay Decoder: Upon receivingy}, declares at the end of blodkthatm, is sent if it

is the uniqgue message such that:
(Xn(mb\ibq), X7 (lp-1)s Yfzi) € TM(X, X1,Y) (5)

Decoder: First assume that in block— 1 we knowl, , - that was estimated in the
block b — 2. At the end of blockb — 1 it looks for m;_; such that:

(X" 12, X702, Vi1 ) € T (X, X, Y) (6)
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andm,_; € B(Zb_l).

Upon receivingy; the receiver declares that ; is sent if:
(X1 (0). Y1) € T (X0, Y) (7)

It usesl,_; in block b for decodingrm,.

1 b
Relay En. (1) 2 (Iy_1)
En. 2 (ma|1) | 2 (i)
Reley Dec. _ finds 7y, Iy
Dec. L =1 estimates, ;
andmy_,

Fig. 9. Encoding and decoding in Relay Channel for blocks d lamre explained with the help of the table.

Analysis of probability of error: Assume without loss of generality that
(Lb_g,Lb_l,Mb,Eb_l) =(1,1,1,1) , wherel,_; is the relay estimate of,_;. We can
assume see Lecture 5, that there are no errors in the bloake/éne decoded previously
to block b.

We define the following events:

B = {(X"(U), X} (1), 7) ¢ T}, (8)
{amb = # 1 (X, XT (), V) € T, (©)
{xr.yy ¢ 704, (10)
{35 1= 7.0 # 1 (X7(), %) € 72(")}7 (11)

By = {(X"(11), X7(1), Y1) ¢ T}, (12)
= {Fh1 =5 A 1 (X0 X(). ) € T ey € B(Loa) [ 13)
= {

Ny =45 #1: (X (j),Yb")GI(")}-
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(14)

By the union bound of events:

P"™ = Pr(E,UE,UE;UFE;UFEsUEgU Ey)

< iP(EZ-).

We find the probability of error of each event:

« For P(E,) — 0, P(E5) — 0 and P(E5) — 0 asn — oo by L.L.N.

« In order to bound the second term in the last equation, weusdl properties of joint

typical sequences. When we know thét is generated according to p(y;|z;) and

x™ is generated according to p(z|z;). We will look at the probability that’* is

jointly typical with z™. The probability of this event is bounded by:

IN

IN

<

R < I(X;Y1|Xy) — d(e)

7j=2

2nR

YooY plary)

I=2 (2,21,y)eT™

2nR

Yy, WAV pa,m)p(y )
J=2 Number of elements in 7’E<n)

2nR

Z 2n(H(X,X1,Y)-l—E)2—n(H(X,X1)—€)2—n(H(Y1‘Xl)—e)
j=2

2nR

Z 27n(I(X;Y1 | X1)—3¢)
=2

27’LR2—TL(I(X;Y1 | X1)—de¢) ]

andé(e) — 0 asn — oo.

« In order to bound the forth term in the last equation, we wak wroperties of

joint typical sequences. When we look at the probabilityt tffa which is generated
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according to~ p(y), is jointly typical with z, which is generated according to

~ p(x1). The probability of these event is bounded by:

i
Pr(U;Ey ) < p  P(E4;)
=2
onk'
< V" 9 nlI(X1Y)-6()
j=2

R < I(X3;Y)—6(e) andd(e) — 0 asn — oc.

« In order to bound the six term in the last equation, we lookhat probability that
y", which is generated according te p(y|z;), is jointly typical with 2 which is
generated according t® p(z|x;) wherez} € 7.™ . Because in block b-1 decoder
know ,_; from (7), the bin are known and in each bin there 2ifé"~"") messages.

The probability of this event is bounded by:

on(R—R/)

Pr(U;Ee;) < Y P(Egy)

< 9—n(I(X;Y|X1)=6(e))

gn(R—R")o—n(I(X;Y|X1)=6(e))

R— R <I(X;Y|X1)—d(e) andd(e) — 0 asn — oo.
. For the seventh term, similar to the forth term we becofex I(X;;Y) — d(¢)

andd(e) — 0 asn — oc.
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Therefore we have the following bounds:

R <I(Xy;Y)
R< R —I(X;Y|X)) (15)
R<I(X;Y|Xy)
By using Fourier Motskin elimination (see Lecture 4) fronsfitwo equations of (15)
we become:
I(X;Y)>R—-1(X;Y|Xy) (16)
R<I(X;Y)+I(X:;V|X)) = I(X,X;Y) (17)

From last equation of (15) and (17):

R< r(nax) min (1(X;Y1|X41), (X, X1;Y)) (18)
pl{z,r1
This completes the proof of achievability. [ |
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