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A. Lagrange Duality

The primary and dual functions are defined as following:

Primary:

minimize fo (x) (1)

subject to fi (x) ≤ 0 i = 1, 2, . . . , m

hj (x) = 0 p = 1, 2, . . . , p

Dual:

maximize g (λ, υ) (2)

subject to λ ≥ 0

The Lagrangian is defined as following:

L (x, λ, υ) = f0 (x) +
m
∑

i=1

λifi (x) +

p
∑

i=1

υihi (x) (3)

The Lagrangian dual function is defined as following:

g (λ, υ) = inf
x∈D

L (x, λ, υ) = inf
x∈D

[

f0 (x) +
m
∑

i=1

λifi (x) +

p
∑

i=1

υihi (x)

]

(4)

B. Properties

1) L (x, λ, υ) is convex inx, linear inλ and inυ .

2) g (λ, υ) is concave inλ, υ as an infimum over linear functions ofλ, υ, regardless

of the convexity of the primary problem!

3) for all λ ≥ 0, we haveg (λ, υ) ≤ p∗, wherep∗ is the optimal value of the prime

problem.
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Proof: Let x∗ be the argument that achieves the optimal value ofp∗, namely

f0 (x
∗) = p∗, andfi (x∗) ≤ 0, hi (x

∗) = 0. Sinceλ ≥ 0 andfi (x∗) ≤ 0 we have

m
∑

i=1

λifi (x
∗) ≤ 0. (5)

Sincehi (x
∗) = 0 we have

p
∑

i=1

υihi (x
∗) . (6)

So by Eq. (5) and (6) we have

m
∑

i=1

λifi (x
∗) +

p
∑

i=1

υihi (x
∗) ≤ 0. (7)

Then,

g (λ, υ) = inf
x∈D

[

f0 (x) +

m
∑

i=1

λifi (x) +

p
∑

i=1

υihi (x)

]

(8)

≤ f0 (x
∗) +

m
∑

i=1

λifi (x
∗) +

p
∑

i=1

υihi (x
∗)

(a)

≤ f0 (x
∗)

(b)
= p∗.

where(a) follows from (5), and(b) is by definition.

4) Since the above is true for allλ ≥ 0, we have

max
λ≥0

g (λ, υ) ≤ p∗ (9)

5) For convex primary problems, under the condition that there exists somex ∈ domf

such thatfi (x) < 0 for all i (strong inequality), then:

max
λ≥0

g (λ, υ) = p∗ (10)

6) Any solution of the primary problem (not necessarily the minimal value) is an upper

bound for the solution. Any solution of the dual problem is a lower bound.
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C. Examples

1) Primary:

minimize x
T
x (11)

subject to Ax = b

So we have

L (x, λ, υ) = x
T
x+ υT (Ax− b) (12)

∂

∂x
L (x, λ, υ) = 0 ⇒ xmin = −

1

2
Aυ

g (λ, υ) = L (xmin, λ, υ) = −
1

4
υT

AA
Tυ − υT

b

and thedual problem is:

max
υ

[

−
1

4
υT

AA
Tυ − υT

b

]

(13)

Since the primary problem is convex (and there are no inequality constraints), we

have thatmaxυ g (υ) = minx f0 (x) with the constraints satisfied.

2) Primary:

minimize c
T
x (14)

subject to Ax = b

− x ≤ 0

So we have

L (x, λ, υ) = c
T
x− λT

x + υT (Ax− b) (15)

g (λ, υ) = inf
x

L (xmin, λ, υ) =











−υT
b, c

T − λT + υT
A = 0

−∞, otherwise

So,

g (λ, υ) =max
υ

[

−υT
b
]

(16)
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subject to











c
T − λT + υT

A = 0

λ ≥ 0

Sinceλ is not a part of the maximization, we can write

g (λ, υ) =max
υ

[

−υT
b
]

(17)

subject to c
T + υT

A = 0

3) Primary:

minimize f0 (x) (18)

subject to











Ax ≤ b

Cx = d

So we have

L (x, λ, υ) = f0 (x) + λT (Ax− b) + υT (Cx− d) (19)

g (λ, υ) = inf
x∈domf0

L (xmin, λ, υ)

We simplify g (λ, υ):

g (λ, υ) = inf
x∈domf0

[

f0 (x) + λT (Ax− b) + υT (Cx− d)
]

(20)

= − sup
x∈domf0

[

−
(

λT
A+ υT

C
)

x− f0 (x) + λT
b+ υT

d
]

= −f ∗
(

−λT
A+ υT

c
)

− λT
b− υT

d

wheref ∗ (y) = maxx [yx− f (x)] is the conjugate function.

4) Entropy maximizationPrimary:

minimize

n
∑

i=1

xi log xi (21)

subject to











Ax ≤ b

1
T
x = 1
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So we have

L (x, λ, υ) =

n
∑

i=1

xi log xi + λT (Ax− b) + υ
(

1
T
x− 1

)

(22)

Taking the derivative in order to find the minmimum, we have

∂

∂xi

L (x, λ, υ) = log xi + 1 + λT
ai + υ = 0 (23)

so that the minimal value is obtained for

xi = e(−1−λT
ai−υ) (24)

. substituting this into (22) we have

g (λ, υ) = L (xmin, λ, υ) =
n
∑

i=1

e(−1−λT
ai−υ) log e(−1−λT

ai−υ) (25)

+ λT

(

n
∑

i=1

aie
(−1−λT

ai−υ) − b

)

+ υ

(

n
∑

i=1

e(−1−λT
ai−υ) − 1

)

= −

n
∑

i=1

e(−1−λT
ai−υ) − λT

b− υ

So the dual problem is

max
λ,υ

[

−

n
∑

i=1

e(−1−λT
ai−υ) − λT

b− υ

]

(26)

subject to λ ≥ 0

We can find the optimalυ analytically:

∂

∂υ
g (λ, υ) =

n
∑

i=1

e(−1−λT
ai−υ) − 1 = 0 (27)

⇒ υopt = log
n
∑

i=1

e(−1−λT
ai)

Substituting this into the maximization problem, and recalling that
∑n

i=1 e
(−1−λT

ai−υ) = 1 from (27), the dual problem can be written as

max
λ

[

−1− λT
b− υopt

]

= max
λ

[

−1− λT
b− log

n
∑

i=1

e(−1−λT
ai)

]

(28)
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So finally the optimization problem can be written as

max
λ

[

−λT
b− log

n
∑

i=1

e(−1−λT
ai)

]

(29)

subject to λ ≥ 0

I. KKT CONDITIONS AND DUAL FUNCTIONS

Let (λ∗, υ∗) be the argument that achieves the maximum value of the dual problem,

denoted byd∗. Letx∗ be the argument that achieves the maximum of the primary problem,

denoted byp∗. Assuming that strong duality holds (p∗ = d∗), we may write

f0 (x
∗) = g (λ∗, υ∗) = inf

x∈domf

[

f0 (x) +
∑

i

λ∗
i fi (x) +

∑

i

υ∗
i hi (x)

]

(30)

≤ f0 (x
∗) +

∑

i

λ∗
i fi (x

∗) +
∑

i

υ∗
i hi (x

∗)
(a)

≤ fo (x
∗) ,

where(a) follows from (7), so that all the inequalities are equalities (as we started with

f0 (x
∗) and ended withf0 (x∗)). Is so, we have that

f0 (x
∗) = f0 (x

∗) +
∑

i

λ∗
i fi (x

∗) +
∑

i

υ∗
i hi (x

∗) . (31)

Theorem 1 KKT Conditions: Letx∗ and(λ∗, υ∗) be any primal and dual optimal points

which satisfyp∗ = d∗. Sincex∗ minimizesL (λ∗, υ∗, x) over x, we must have

0 = ∇xL (λ, υ, x) = ∇xf0 (x
∗) +

∑

i

λ∗
i∇xfi (x

∗) +
∑

i

υ∗
i∇xhi (x

∗) (32)

Thus necessary conditions forx∗ and (λ∗, υ∗) to be primal and dual optimal points are

fi (x
∗) ≤ 0 ∀i (33)

hi (x
∗) = 0 ∀i (34)

λ∗
i ≥ 0 ∀i (35)

λ∗
i fi (x

∗) = 0 ∀i (36)

∇xf0 (x
∗) +

∑

i

λ∗
i∇xfi (x

∗) +
∑

i

υ∗
i∇xhi (x

∗) = 0 (37)

which are called theKarush-Kuhn-Tucker (KKT) conditions.
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If the primal problem is convex, the KKT conditions are also sufficient for the points

to be primal and dual optimal.


