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Multi-User Information Theory Jan 17, 2012

Lecture 10

Lecturer:Dr. Haim Permuter Scribe: Wasim Huleihe

I. CONJUGATE FUNCTION

In the previous lectures, we discussed about convex setgrdnnctions (properties
and examples), and we present some operations that presmivexity. This lecture we
will continue the discussion about convex functions; dagbniand examples of conjugate

functions will be given, and we will present some generalivearoptimization problems.

Definition 1 (Conjugate function) Let f : R™ — R. The functionf* : R® — R defined
as
fy) & sup (y'z— f(2)), (1)
xedomf

is called theconjugatefunction of f.
This definition is illustrated in Fig. 1.

Remark 1 The domain of the conjugate function is given by

domf* = {y € R": sup (yTx — f(x)) < oo} : (2)

xedomf

Remark 2 The conjugate functionf*, is a convex function. This can be easily verified
using that fact that the supremum of a set of convex funct{oneur case, for a fixed,
the differencey” > — f () is a linear function ofy and hence the difference is convex)

is convex function. Note that this is true whether or rios convex.

Remark 3 y”z stands for inner product in finite space dimensions. In itdigimen-

sional vector spaces, the conjugate function is defined wiappropriate inner product.

This operation play an important role in many applicationshs as duality. In the

following, we present some examples of conjugate functions
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Fig. 1. The conjugate functiofi* (y) is the maximum gap between the linear functipn and the functionf (z).

Example 1 (Affine function) f (z) = ax + b. By definition, the conjugate function is
given by f* (y) = sup, (yz — ax — b). As a function ofz, the difference is bounded iff

y—a = 0. The conjugate function is givefi (y) = —b, and the domain is dofif = {a}.

Example 2 (Negative logarithm) f () = —logz, with domf = R, ,. By definition,
the conjugate function is given by* (y) = sup, (yz + logz). As a function ofz, the
difference is bounded ifff < 0, and reaches its maximum at= —i. The conjugate
function is givenf* (y) = —log (—y) — 1, and the domain is dofif = —R, ..

Example 3 (Exponential) f (z) = ¢®. By definition, the conjugate function is given by
f*(y) = sup, (yx — €”). As a function ofz, the difference is bounded iff > 0, and
reaches its maximum at = Iny. The conjugate function is givefi* (y) = ylny — v,

and the domain is dofit = R, ..

Example 4 (Entropy) f (z) = xlogx, with domf = R, . By definition, the conjugate
function is given byf* (y) = sup, (yx — zlogx). As a function ofz, the difference is
bounded for ally, and reaches its maximum at= ¢®~Y. The conjugate function is

given f* (y) = ¢¥~Y, and the domain is dofif = R. So the conjugate of entropy is
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related to the exponential family.

Example 5 (Log-sum-exp) f (z) = log > ", %, with domf = R™. By definition, the
conjugate function is given by* (y) = sup, (yz —log >, €*). By setting the gradient
with respect tar to zero, the critical points are given by

Ty

. (&

s D i €7

The domain of f* is domf* = {yeR":0<y, <1, >"  y;=1}. The conjugate
function is givenf* (y) = >""" | y; log y;.

1=1,...,n. 3)

Next, we present two interesting properties of conjugatetion.

Properties of conjugate function

o fHy)+fla) =2y
« Conjugate of the conjugate: jf is convex function, and its epigraph is closed set,
then f** = f.

[I. CONVEX OPTIMIZATION PROBLEMS

The general optimization problem is given by

min fo ()
st.fi(z)<0; i=1,....m

where fo (z),{f; (x)};Z, are convex functions, anfl; (x)}7_, are affine functions. The
optimization problem (4) describe the problem of findingrathat minimizes the objective
fo subject to (s.t.) the constrainfs(z) < 0; i =1,...,m,andh; (z) =0; j=1,...,p.

In the following, we present some classes of optimizatiabf@ms that can be efficiently

solved using Matlab.

. Linear Programminglinear programming is a technique for the optimization of a

linear objective function, subject to linear equality aiear inequality constraints.
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Its feasible region (the space of all possible solutions)aiconvex polyhedron.

Mathematically, the optimization problem in this case canrbthe following form
mxin e +d
st.Gx<h

Az =b. (5)

« Linear Fraction linear fraction optimization problem can be written as

e +d
min

z elo+ f
st.Gx < h

Az =0
efe 4+ f>0. (6)

Let us transform this optimization problem to a linear ong (Ehis can be easily
done by introducing auxiliary variables defined as
B 1
T4 f
and
T
e+ f
Using these new variables the objective function becefye-dz, and the constraints

y:

become

Gr<h=Gy<hz

Ar=b= Ay = bz

e+ f>0=2>0

ey + fz = 1 = New constraint
Therefore the optimization problem is given by

minc’y — dz
Y,z
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st.Gy < hz
Ay = bz
2>0, ely+ fz=1. (7
« Quadratic Optimization Problenthe quadratic optimization problem is given by
mmin %xTPx +qlz+r
st.Gx <h
Az =b. (8)
whereP € S7}.

« Second Order Cone Programmintpe second order cone optimization problem is
given by
mgn e
st Az +b|l, <clz+b; i=1,...,n
Fx=yg. 9)
« Geometric Programminghis class of problems is not convex, but we will transform

it to a convex one.

Definition 2 The function f () = cz{" - 2% - ... - 22, wherec > 0, is called

n !

monomial
Definition 3 The functionf (z) = 1 | et -232*.. . ™", is calledposynomial
The Geometric optimization problem is given by
min fo ()
st fi(x)<0; i=1,....,m
hj(z) =0; j=1,...,p, (10)

where fo (z),{f: (z)}Z, are posynomial functions, anfh; (x)}7_, are monomial

functions.
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Example 6 Consider the following optimization problem

.
min —
Y,z Y
st.2<r<3
3
:c2+?y§\/§
x
= =22,
y

is a Geometric optimization problem.

Geometric programs are not (in general) convex optiminghimblems, but they can
be transformed to convex problems by a change of variabl@sadransformation of
the objective and constraint functions. We will use thealales defined as; = ev:.

Using this transformation, the Geometric optimizationlppeon given in (10), can
be rewritten as

- Ko
min log Z exp <Z ao k,mYm + bO,k)]
y

Lk=1 m

- K,
s.t. log Z exp (Z @i fomYm + bz‘,k) <0; +=1,...,m

Lk=1 m

ch,mmerdj:o; j=1,...,p. (112)

m

Since the objective function, and the first constraint amver (log-sum exponential

function), and the second constraint is affine, this probiermonvex optimization
one.

« Semi-Definite Programming (SDR)e optimization problem is given by

min e’z

xT

Az = b, (12)
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