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Multi-User Information Theory Jan 17, 2012

Lecture 10

Lecturer:Dr. Haim Permuter Scribe: Wasim Huleihel

I. CONJUGATE FUNCTION

In the previous lectures, we discussed about convex set, convex functions (properties

and examples), and we present some operations that preserveconvexity. This lecture we

will continue the discussion about convex functions; definition and examples of conjugate

functions will be given, and we will present some general convex optimization problems.

Definition 1 (Conjugate function) Let f : Rn → R. The functionf ∗ : Rn → R defined

as

f ∗ (y) , sup
x∈domf

(

yTx− f (x)
)

, (1)

is called theconjugatefunction of f .

This definition is illustrated in Fig. 1.

Remark 1 The domain of the conjugate function is given by

domf ∗ =

{

y ∈ R
n : sup

x∈domf

(

yTx− f (x)
)

< ∞
}

. (2)

Remark 2 The conjugate function,f ∗, is a convex function. This can be easily verified

using that fact that the supremum of a set of convex functions(in our case, for a fixedx,

the differenceyTx− f (x) is a linear function ofy and hence the difference is convex)

is convex function. Note that this is true whether or notf is convex.

Remark 3 yTx stands for inner product in finite space dimensions. In infinite dimen-

sional vector spaces, the conjugate function is defined via an appropriate inner product.

This operation play an important role in many applications such as duality. In the

following, we present some examples of conjugate functions.
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f (x)

(0,−f ∗ (y))

yx

Fig. 1. The conjugate functionf∗ (y) is the maximum gap between the linear functionyx and the functionf (x).

Example 1 (Affine function) f (x) = ax + b. By definition, the conjugate function is

given byf ∗ (y) = supx (yx− ax− b). As a function ofx, the difference is bounded iff

y−a = 0. The conjugate function is givenf ∗ (y) = −b, and the domain is domf ∗ = {a}.

Example 2 (Negative logarithm) f (x) = − log x, with domf = R++. By definition,

the conjugate function is given byf ∗ (y) = supx (yx+ log x). As a function ofx, the

difference is bounded iffy < 0, and reaches its maximum atx = − 1
y
. The conjugate

function is givenf ∗ (y) = − log (−y)− 1, and the domain is domf ∗ = −R++.

Example 3 (Exponential) f (x) = ex. By definition, the conjugate function is given by

f ∗ (y) = supx (yx− ex). As a function ofx, the difference is bounded iffy > 0, and

reaches its maximum atx = ln y. The conjugate function is givenf ∗ (y) = y ln y − y,

and the domain is domf ∗ = R++.

Example 4 (Entropy) f (x) = x log x, with domf = R++. By definition, the conjugate

function is given byf ∗ (y) = supx (yx− x log x). As a function ofx, the difference is

bounded for ally, and reaches its maximum atx = e(y−1). The conjugate function is

given f ∗ (y) = e(y−1), and the domain is domf ∗ = R. So the conjugate of entropy is
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related to the exponential family.

Example 5 (Log-sum-exp)f (x) = log
∑n

i=1 e
xi , with domf = R

n. By definition, the

conjugate function is given byf ∗ (y) = supx (yx− log
∑n

i=1 e
xi). By setting the gradient

with respect tox to zero, the critical points are given by

yi =
exi

∑n

i=1 e
xi

i = 1, . . . , n. (3)

The domain off ∗ is domf ∗ = {y ∈ R
n : 0 ≤ yi ≤ 1,

∑n

i=1 yi = 1}. The conjugate

function is givenf ∗ (y) =
∑n

i=1 yi log yi.

Next, we present two interesting properties of conjugate function.

Properties of conjugate function

• f ∗ (y) + f (x) ≥ xT y.

• Conjugate of the conjugate: iff is convex function, and its epigraph is closed set,

thenf ∗∗ = f .

II. CONVEX OPTIMIZATION PROBLEMS

The general optimization problem is given by

min
x

f0 (x)

s.t. fi (x) ≤ 0; i = 1, . . . , m

hj (x) = 0; j = 1, . . . , p, (4)

wheref0 (x),{fi (x)}mi=1 are convex functions, and{hj (x)}pj=1 are affine functions. The

optimization problem (4) describe the problem of finding anx that minimizes the objective

f0 subject to (s.t.) the constraintsfi (x) ≤ 0; i = 1, . . . , m, andhj (x) = 0; j = 1, . . . , p.

In the following, we present some classes of optimization problems that can be efficiently

solved using Matlab.

• Linear Programming: linear programming is a technique for the optimization of a

linear objective function, subject to linear equality and linear inequality constraints.
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Its feasible region (the space of all possible solutions), is a convex polyhedron.

Mathematically, the optimization problem in this case can be in the following form

min
x

cTx+ d

s.t.Gx ≤ h

Ax = b. (5)

• Linear Fraction: linear fraction optimization problem can be written as

min
x

cTx+ d

eTx+ f

s.t.Gx ≤ h

Ax = b

eTx+ f > 0. (6)

Let us transform this optimization problem to a linear one (5). This can be easily

done by introducing auxiliary variables defined as

z =
1

eTx+ f
,

and

y =
x

eTx+ f
.

Using these new variables the objective function becomecTy−dz, and the constraints

become

Gx ≤ h ⇒ Gy ≤ hz

Ax = b ⇒ Ay = bz

eTx+ f > 0 ⇒ z ≥ 0

eTy + fz = 1 ⇒ New constraint.

Therefore the optimization problem is given by

min
y,z

cTy − dz
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s.t.Gy ≤ hz

Ay = bz

z ≥ 0, eTy + fz = 1. (7)

• Quadratic Optimization Problem: the quadratic optimization problem is given by

min
x

1

2
xTPx+ qTx+ r

s.t.Gx ≤ h

Ax = b. (8)

whereP ∈ S
n
+.

• Second Order Cone Programming: the second order cone optimization problem is

given by

min
x

fTx

s.t. ‖Aix+ b‖2 ≤ cTi x+ bi; i = 1, . . . , n

Fx = g. (9)

• Geometric Programming: this class of problems is not convex, but we will transform

it to a convex one.

Definition 2 The functionf (x) = cx
q1
1 · xq2

2 · . . . · xqn
n , where c ≥ 0, is called

monomial.

Definition 3 The functionf (x) =
∑K

k=1 ckx
q1,k
1 ·xq2,k

2 ·. . .·xqn,k
n , is calledposynomial.

The Geometric optimization problem is given by

min
x

f0 (x)

s.t. fi (x) ≤ 0; i = 1, . . . , m

hj (x) = 0; j = 1, . . . , p, (10)

where f0 (x),{fi (x)}mi=1 are posynomial functions, and{hj (x)}pj=1 are monomial

functions.
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Example 6 Consider the following optimization problem

min
x,y,z

x

y

s.t. 2 ≤ x ≤ 3

x2 +
3y

z
≤ √

y

x

y
= z2.

is a Geometric optimization problem.

Geometric programs are not (in general) convex optimization problems, but they can

be transformed to convex problems by a change of variables and a transformation of

the objective and constraint functions. We will use the variables defined asxi = eyi.

Using this transformation, the Geometric optimization problem given in (10), can

be rewritten as

min
y

log

[

K0
∑

k=1

exp

(

∑

m

a0,k,mym + b0,k

)]

s.t. log

[

Ki
∑

k=1

exp

(

∑

m

ai,k,mym + bi,k

)]

≤ 0; i = 1, . . . , m

∑

m

cj,mym + dj = 0; j = 1, . . . , p. (11)

Since the objective function, and the first constraint are convex (log-sum exponential

function), and the second constraint is affine, this problemis convex optimization

one.

• Semi-Definite Programming (SDP)the optimization problem is given by

min
x

eTx

s.t. x1F1 + . . .+ xnFn � 0

Ax = b, (12)
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