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Multi-User Information Theory

Lecturer: Haim Permuter

Lecture 5

November 29th, 2011

Scribe: Lior Dikstein

I. RELAY CHANNEL- DECODE & FORWARD VIA BACKWARD DECODING
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Fig. 1. Relay Channel

Last lecture we saw an upper bound on the capacity of the s#agnel, shown in Fig. 1:

C < maxp(yp,) Min {I(X; Y Vil X1), I(X, X1 Y)}.

p(y, y1 @, 1)

YTL

This lecture we will show the following theorem:

Theorem 1 (Decode & Forward via Backward Decoding Réte)

R < min {I(X; Y Vil X1), I(X, X1 Y)},

for somep(z, z1), then R is achievable.

Decoder

1)

)

Proof: We will use Block Markov Coding. The idea is to take av long block, and divide it into

B smaller blocks, whereV = nB (see Fig 2). Another new method we will use is calBackward

Decoding. Here the idea is to decode bloékusing blockd + 1.

Let us denoten, as the message send in blogk

Code design (for block b): Fix p(x,z;) that achieves the lower bound. Randomly and independently

generate"? sequences’ (my_1) ~ p(z1). For eache? (m;_1), generate"? sequences™ (my|my_1)

according to i.i.d~ p(z|z1). The code design is illustrated in Fig 3.
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N=Bn

Fig. 2. Superblock Bn separated into B blocks

271R 2nR

x?(mbfl) xn(mb|mb,1)

Fig. 3. Coding scheme of Block Markov Coding, Decode & Fonvaia Backward Decoding. For each codewarfl(m,_), we

generate2™? sequences:™ (my|my_1)

Encoder: In block b sendsx™ (my|mp—1).
Relay Encoder: At the end of blockh—1 it decodes message;,—, and in blockb transmitts the message
in block b.
Relay Decoder: At the end of block the relay needs to decode the messageThe relay knowsi,_;
and it looks for:
(X”(mb, A1), X2 (51, YI”) e T (X, X1, Y1). 3)

Decoder: First, we assume the decoder knowiig and wants to decodg:,_;. We also assume that
mp = 1.
The decoder waits until the end of the block, and starts dagdoackwards. Therefore it looks for:

(X" (1), X (1), Y™ ) € T (X, X1, Y). (4)

Analysis of probability of error:
With out loss of generality, we can assume that messaggsi,—1) = (1,1) where sent.

An error occurs in the following cases. Define the events:

B o= {0, xrm), v ¢ 70 (5)
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By = {0, X100,y ¢ T (6)
Byy = {Fm=jj#1: (X"(,0, X0 ¥ € T, @)
Biy = {3 =44 #1: (X040, X70). ") € T . ®)

(©)

Then by the union of events bound:
P = Pr(E, UE, UE3 U Ey)

< P(Ey) + P(Ez) + P(Es) + P(Ey).

Now, let us find the probability of each event:

« For the first two termsP(E;) — 0 and P(E3) — 0 asn — oo from L.L.N.

« For the third term we look at the probability thef*, which is generated according top(y1|z1), is
jointly typical with 2™ which is generated according to p(z|z1) wherez} € 72("). The probability

of this event is bounded by:

QW,R

Pr(U;Bs ;) < P(Es)
=2

QW,R

§ Z 2777,[(X;Y1|X1)
j=2

— 27LR2—TLI(X;Y1‘X1).

« For the forth term we look at the probability thet, which is generated accordingtop(y), is jointly
typical with ™ which is generated according to p(z|xz;) andz} which is generated according to

~ p(z1). The probability of this event is bounded by:
2nR
Pr(U;By;) < P(Ey;)
j=2
QW,R
< Z 9—nl(X,X1;Y)
j=2

— 2”R2—7LI(X,X1;Y) .
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Now, to complete the proof, the following lemma will enable t@ bound the probability of error of the

super-blockn B by bounding the probability of error of each block.

Ag N AS

As N AS N AS

Fig. 4. Graphical display of Lemma 1. The red only arealisn A and the green only area i$3 N A5 N A

Lemmallet {A;}]_, be a set of events and lef; denotes the complement of the eveht Then

J n Jj—1 n
P(JA) <D P(A; ) A5) =) P(A;|AS, A, .., A5 ). (10)
1 j=1 i j=1

j= i=1
Proof: For simplicity let us assume that= 3. In a straightforward manner the proof extends to any

number of sets/. For any three sets of events , A, A3 we have
P(AjUAUA3) = P(A1U(A2N Af) U (AN AT N AS))

= P(A;)+ P(A2n AS) + P(As N Af N A3)
P(AyNAS)  P(Asn AS N AS)

P(A7) P(Af N A5)
= P(A;)+ P(A2]Af) + P(As|Af N A3)

< P(4)+

= P(A1)+ P(A2|AT) + P(A3|AS, A3S). (11)

Fig. 4 illustrates the lemma faof = 3. ]
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Using Lemma 1 we bound the probability of error in the suppeclb Bn by the sum of the probability
of having an error in each blodkgiven that in previous block® + 1, ..., B) the messages were decoded
correctly.

Let us bound the probability that for somheUsing Lemma 1 it suffices to show that the probability of
error-decoding in each blodkgoes to zero, assuming that all previous messages in Blig&k...,b — 1)

were decoded correctly. [ |

1. PARTIAL DECODE& FORWARD
In this coding scheme the relay will decode only part of thessage. This provides a better lower bound
on capacity.
Theorem 2 (Partial Decode & Forward Raté)
R < min {I(U; Yi|X1) + I(X; Y| X1, U), I(X, X1, Y)}, (12)

for somep(z, x1,u), then R is achievable.

WhereU is an auxiliary random variable.

Note: If we substituteU = X, the above lower bound reduces the decode-and forward Iboand,
and if we substitutd/ = ), it reduces to the direct transmission lower bound.

Outline of achievability: Again, we will useBlock Markov Coding. Divide the N long block into B

smaller blocks, wheréV = nB, as illustrated in Fig 5.

Fig. 5. Separation into B blocks

Proof: Split the messagen into two independent messagés;,, m; ) with rates R’ and R”.Thus
R=R +R".
my € {1,2,...,2"F}
mj, € {1,2,..., 2"},
my € {1,2,...,2""}. (13)
(14)

The idea is to have the relay decode onty.
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Code design (for block b): Fix p(z,z,) that achieves the lower bound. The Relay decoasso
randomly and independently generate® sequences?(m, ,) ~ p(z1). For eachz(m}_,), generate
2"7" sequences:™(mj|mj,_,) according to i.i.d.~ p(u|z:). Now, for every(m},m;) generate2"?’

sequences” (my |mj, m;_,) according to i.i.d~ p(z|u,z1).The code design is illustrated in Fig 6.

2nRII

2nR

onR' T (mg|m;,, mgx—l )

™ (my, mp,_y)

7 (my_y)

Fig. 6. Coding scheme of Block Markov Coding, Partial Dec&d&orward. For eachey (mj_,), we generat@"R' sequences

u™(mjy|my_ ) and for every(mj, m;) we generat@R” sequences:™ (my |my, mj_ )

Encoder: Sendsz” (my/|my,, m},_,).
Relay Decoder: At the end of block the relay needs to decode the messageThe relay knowsn;_,
and it looks for:
(U"(mg,m;_l),X{l(mg_l),YI") e T (X, X1, Yh). (15)

Decoder: First, we assume the decoder knokiz§, ; and wants to decodeé, andri,. We also assume
thatmp = 1.

The decoder waits until the end of the block, and starts dagdoackwards. Therefore it looks for:
(U7 it 28 ), X7 G 1 mg), X (), Y™ ) € TOO(X, X1, Y), (16)

Analysis of probability of error:
With out loss of generality, we can assume that messaggsing,, | = (1,1) where sent.

An error occurs in the following cases. Define the events:

B = {UM(LD. X7, ¢ T, 7)

Ey

Um0, X7, X7(),7") ¢ T (18)

oy = {3 =i #1: U 0, 1), X7 (1), 1) € T, (19)
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Bay = {3} =55 #1: (U (Lm}), X" (1L, m}), X (m}), Y") € T}, (20)
Bsy = {3mf =j.j # 1 (O (L1), X (g, [1,1), X7(1),Y") € T, (21)

Boga = {3mh #1=jimfly = ivi,j # 1 (U (Lmp), X" (i [1,mp), X7 (m), V™) € T .
(22)

Then by the union of events bound:

P = Pr(Ey UFE,UE3UE, U E5 U Eg)

< P(Ey) + P(E») + P(E3) + P(Ey) + P(E5) + P(Es).

Now, let us find the probability of each event:

« For the first two termsP(E;) — 0 and P(E3) — 0 asn — oo from L.L.N.

« For the third term we look at the probability thef*, which is generated according to p(y1|z1), is
jointly typical with «™ which is generated according te p(u|z1) wherez} € 7;(" The probability

of this event is bounded by:

2nR

Ungj Z P ES,]

QW,R'

S Z 27nI(U;Y1|X1)
j=2

— 27LR/2—7LI(U;Y1 ‘Xl)

« For the forth term we look at the probability th&t*, which is generated according to p(y), is
jointly typical with ™ which is generated according to p(x), »™ which is generated according to
~ p(u), andz? which is generated according to p(x1). The probability of this event is bounded
by:

on R/

U]E4] ZPE4]

QW,R/

< Z 9—nl(U,X,X1;Y)
=2

— 27LR/2—TLI(U,X,X1;Y) .
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« For the fifth term we look at the probability th&t™, which is generated according to p(y|x1), is
jointly typical with =™ which is generated according to p(x|z1,u) where (u™, z7) € 7., The
probability of this event is bounded by:

gnR"

Pr(U;Es;) < > P(Es;)
=2

gnR"

< Z 9—nl(X;Y|U,X1)
=2

_ 2nR”27nI(X;Y\U,X1)'

« For the last term we look at the probability tHa¥, which is generated according top(y), is jointly
typical with 2™ which is generated according te p(z), u™ which is generated according to p(u),
andz7 which is generated according to p(x1). The probability of this event is bounded by:

QW,R/ 2nR”

PT’(U]’ Ui EG,j,i) S Z Z P(EGJ'J')
j=2 =2

QW,R/ 2nR”

< Z Z o—nl(U,X,X1:Y)

j=2 i'=2

27LR/27LR//2—7LI(U,X7X1§Y).

Therefore we have the bounds:

R < I(U;Y]X)),
RI S I(U7X7X17Y)7
R < I(Ua Xa XI;Y)a

R' <I(X;Y|U,Xy).
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However, we want to find the bound dialone. To do so we will usBourier-Mutskin elimination which

is a mathematical algorithm for eliminating variables fransystem of linear inequalities.
Example 1
r1 <24 x9, (23)
1 > 3 — To. (24)
For eachx, there existse; such that (23) and (24) are satisfied if:
3— a2 <2+ x9, (25)

so we can reach an inequality fop alone:

1
To > 3 (26)
In our setting, whereR” = R — R’ we have
R < I(U;Y|Xy),
R <R—-I(X;Y|U, X,).
So using the Fourier-Mutskin elimination we get
I(U;Y|X1) > R— I(X;Y|U, Xy),
therfore,
R<I(U;Y|X1) + I(X;Y|U,X,).
[
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