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Multi-User Information Theory November 29th, 2011

Lecture 5

Lecturer: Haim Permuter Scribe: Lior Dikstein

I. RELAY CHANNEL- DECODE & FORWARD VIA BACKWARD DECODING
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Fig. 1. Relay Channel

Last lecture we saw an upper bound on the capacity of the relaychannel, shown in Fig. 1:

C < maxP (x,x1) min
{

I(X ;Y, Y1|X1), I(X,X1;Y )
}

. (1)

This lecture we will show the following theorem:

Theorem 1 (Decode & Forward via Backward Decoding Rate)If:

R < min
{

I(X ;Y, Y1|X1), I(X,X1;Y )
}

, (2)

for somep(x, x1), thenR is achievable.

Proof: We will use Block Markov Coding. The idea is to take anN long block, and divide it into

B smaller blocks, whereN = nB (see Fig 2). Another new method we will use is calledBackward

Decoding. Here the idea is to decode blockb, using blockb+ 1.

Let us denotemb as the message send in blockb.

Code design (for block b): Fix p(x, x1) that achieves the lower bound. Randomly and independently

generate2nR sequencesxn
1 (mb−1) ∼ p(x1). For eachxn

1 (mb−1), generate2nR sequencesxn(mb|mb−1)

according to i.i.d.∼ p(x|x1). The code design is illustrated in Fig 3.
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N=Bn

1 2 3 4 BB-1

Fig. 2. Superblock Bn separated into B blocks
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Fig. 3. Coding scheme of Block Markov Coding, Decode & Forward via Backward Decoding. For each codewordxn
1
(mb−1), we

generate2nR sequencesxn(mb|mb−1)

Encoder: In block b sendsxn(mb|mb−1).

Relay Encoder: At the end of blockb−1 it decodes messagêmb−1 and in blockb transmitts the message

in block b.

Relay Decoder: At the end of blockb the relay needs to decode the messagemb. The relay knowŝmb−1

and it looks for:
(

Xn(mb, m̂b−1), X
n
1 (m̂b−1), Y

n
1

)

∈ T (n)
ǫ (X,X1, Y1). (3)

Decoder: First, we assume the decoder knowsm̂b and wants to decodêmb−1. We also assume that

mB = 1.

The decoder waits until the end of the block, and starts decoding backwards. Therefore it looks for:
(

Xn(m̂b,mb−1), X
n
1 (mb−1), Y

n
)

∈ T (n)
ǫ (X,X1, Y ). (4)

Analysis of probability of error:

With out loss of generality, we can assume that messages(m̂b, m̂b−1) = (1, 1) where sent.

An error occurs in the following cases. Define the events:

E1 =
{

(Xn(1, 1), Xn
1 (1), Y

n
1 ) /∈ T (n)

ǫ

}

, (5)



5-3

E2 =
{

(Xn(1, 1), Xn
1 (1), Y

n) /∈ T (n)
ǫ

}

, (6)

E3,j =
{

∃m̂b = j, j 6= 1 : (Xn(j, 1), Xn
1 (1), Y

n
1 ) ∈ T (n)

ǫ

}

, (7)

E4,j =
{

∃m̂b−1 = j, j 6= 1 :
(

Xn(1, j), Xn
1 (j), Y

n) ∈ T (n)
ǫ

}

. (8)

(9)

Then by the union of events bound:

P (n)
e = Pr(E1 ∪E2 ∪ E3 ∪ E4)

≤ P (E1) + P (E2) + P (E3) + P (E4).

Now, let us find the probability of each event:

• For the first two terms,P (E1) → 0 andP (E2) → 0 asn → ∞ from L.L.N.

• For the third term we look at the probability thatY n
1 , which is generated according to∼ p(y1|x1), is

jointly typical with xn which is generated according to∼ p(x|x1) wherexn
1 ∈ T

(n)
ǫ . The probability

of this event is bounded by:

Pr(∪jE3,j) ≤
2nR

∑

j=2

P (E3,j)

≤
2nR

∑

j=2

2−nI(X;Y1|X1)

= 2nR2−nI(X;Y1|X1).

• For the forth term we look at the probability thatY n, which is generated according to∼ p(y), is jointly

typical with xn which is generated according to∼ p(x|x1) andxn
1 which is generated according to

∼ p(x1). The probability of this event is bounded by:

Pr(∪jE4,j) ≤
2nR

∑

j=2

P (E4,j)

≤
2nR

∑

j=2

2−nI(X,X1;Y )

= 2nR2−nI(X,X1;Y ).
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Now, to complete the proof, the following lemma will enable us to bound the probability of error of the

super-blocknB by bounding the probability of error of each block.

A3
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A2 ∩ Ac
1

A3 ∩ Ac
2 ∩ Ac

1

Fig. 4. Graphical display of Lemma 1. The red only area isA2 ∩ Ac

1
and the green only area isA3 ∩ Ac

2
∩ Ac

1

Lemma 1 Let {Aj}Jj=1 be a set of events and letAc
j denotes the complement of the eventAj . Then

P (
J
⋃

j=1

Aj) ≤
n
∑

j=1

P (Aj |

j−1
⋂

i=1

Ac
i ) =

n
∑

j=1

P (Aj |A
c
1, A

c
2, ..., A

c
j−1). (10)

Proof: For simplicity let us assume thatJ = 3. In a straightforward manner the proof extends to any

number of setsJ . For any three sets of eventsA1, A2, A3 we have

P (A1 ∪ A2 ∪ A3) = P (A1 ∪ (A2 ∩ Ac
1) ∪ (A3 ∩ Ac

1 ∩ Ac
2))

= P (A1) + P (A2 ∩Ac
1) + P (A3 ∩ Ac

1 ∩ Ac
2)

≤ P (A1) +
P (A2 ∩Ac

1)

P (Ac
1)

+
P (A3 ∩Ac

1 ∩ Ac
2)

P (Ac
1 ∩ Ac

2)

= P (A1) + P (A2|A
c
1) + P (A3|A

c
1 ∩ Ac

2)

= P (A1) + P (A2|A
c
1) + P (A3|A

c
1, A

c
2). (11)

Fig. 4 illustrates the lemma forJ = 3.
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Using Lemma 1 we bound the probability of error in the supper block Bn by the sum of the probability

of having an error in each blockb given that in previous blocks(b+1, ..., B) the messages were decoded

correctly.

Let us bound the probability that for someb. Using Lemma 1 it suffices to show that the probability of

error-decoding in each blockb goes to zero, assuming that all previous messages in block(1, 2, ..., b− 1)

were decoded correctly.

II. PARTIAL DECODE & FORWARD

In this coding scheme the relay will decode only part of the message. This provides a better lower bound

on capacity.

Theorem 2 (Partial Decode & Forward Rate)If:

R < min
{

I(U ;Y1|X1) + I(X ;Y |X1, U), I(X,X1;Y )
}

, (12)

for somep(x, x1, u), thenR is achievable.

WhereU is an auxiliary random variable.

Note: If we substituteU = X , the above lower bound reduces the decode-and forward lowerbound,

and if we substituteU = ∅, it reduces to the direct transmission lower bound.

Outline of achievability: Again, we will useBlock Markov Coding. Divide theN long block intoB

smaller blocks, whereN = nB, as illustrated in Fig 5.

N=Bn

1 2 3 4 BB-1

Fig. 5. Separation into B blocks

Proof: Split the messagem into two independent messages(m′
b,m

′′
b ) with ratesR′ and R′′.Thus

R = R′ +R′′.

mb ∈ {1, 2, ..., 2nR},

m′
b ∈ {1, 2, ..., 2nR

′

},

m′′
b ∈ {1, 2, ..., 2nR

′′

}. (13)

(14)

The idea is to have the relay decode onlym′
b.
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Code design (for block b): Fix p(x, x1) that achieves the lower bound. The Relay decodesm′
b so

randomly and independently generate2nR sequencesxn
1 (m

′
b−1) ∼ p(x1). For eachxn

1 (m
′
b−1), generate

2nR
′

sequencesun(m′
b|m

′
b−1) according to i.i.d.∼ p(u|x1). Now, for every(m′

b,m
′′
b ) generate2nR

′′

sequencesxn(m′′
b |m

′
b,m

′
b−1) according to i.i.d.∼ p(x|u, x1).The code design is illustrated in Fig 6.

2nR
′

xn
1 (m

′
b−1)

un(m′
b,m

′
b−1)

2nR
′ xn(m

′′
b |m

′
b,m

′
b−1)

2nR
′′

Fig. 6. Coding scheme of Block Markov Coding, Partial Decode& Forward. For eachxn
1
(m′

b−1
), we generate2nR

′

sequences

un(m′

b
|m′

b−1
) and for every(m′

b
, m′′

b
) we generate2nR

′′

sequencesxn(m′′

b
|m′

b
,m′

b−1
)

Encoder: Sendsxn(m′′
b |m

′
b,m

′
b−1).

Relay Decoder: At the end of blockb the relay needs to decode the messagem′
b. The relay knowŝm′

b−1

and it looks for:
(

Un(m′
b, m̂

′
b−1), X

n
1 (m̂

′
b−1), Y

n
1

)

∈ T (n)
ǫ (X,X1, Y1). (15)

Decoder: First, we assume the decoder knowsm̂′
b+1 and wants to decodêm′

b andm̂′′
b . We also assume

thatmB = 1.

The decoder waits until the end of the block, and starts decoding backwards. Therefore it looks for:

(

Un(m̂′
b+1,m

′
b), X

n(m̂′′
b+1|m

′
b+1,m

′
b), X

n
1 (m

′
b), Y

n
)

∈ T (n)
ǫ (X,X1, Y ). (16)

Analysis of probability of error:

With out loss of generality, we can assume that messages(m̂′
b, m̂

′′
b+1 = (1, 1) where sent.

An error occurs in the following cases. Define the events:

E1 =
{

Un(1, 1), Xn
1 (1), Y

n
1 ) /∈ T (n)

ǫ

}

, (17)

E2 =
{

Un(1, 1), Xn(1, 1), Xn
1 (1), Y

n) /∈ T (n)
ǫ

}

, (18)

E3,j =
{

∃m̂′
b = j, j 6= 1 : (Un(m̂′

b, 1), X
n
1 (1), Y

n
1 ) ∈ T (n)

ǫ

}

, (19)
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E4,j =
{

∃m̂′
b = j, j 6= 1 : (Un(1,m′

b), X
n(1|1,m′

b), X
n
1 (m

′
b), Y

n) ∈ T (n)
ǫ

}

, (20)

E5,j =
{

∃m̂′′
b+1 = j, j 6= 1 : (Un(1, 1), Xn(m̂′′

b+1|1, 1), X
n
1 (1), Y

n) ∈ T (n)
ǫ

}

, (21)

E6,j,i =
{

∃m̂′
b 6= 1 = j, m̂′′

b+1 = i, i, j 6= 1 : (Un(1,m′
b), X

n(m̂′′
b+1|1,m

′
b), X

n
1 (m

′
b), Y

n) ∈ T (n)
ǫ

}

.

(22)

Then by the union of events bound:

P (n)
e = Pr(E1 ∪ E2 ∪ E3 ∪E4 ∪ E5 ∪ E6)

≤ P (E1) + P (E2) + P (E3) + P (E4) + P (E5) + P (E6).

Now, let us find the probability of each event:

• For the first two terms,P (E1) → 0 andP (E2) → 0 asn → ∞ from L.L.N.

• For the third term we look at the probability thatY n
1 , which is generated according to∼ p(y1|x1), is

jointly typical with un which is generated according to∼ p(u|x1) wherexn
1 ∈ T

(n)
ǫ . The probability

of this event is bounded by:

Pr(∪jE3,j) ≤
2nR

′

∑

j=2

P (E3,j)

≤
2nR

′

∑

j=2

2−nI(U ;Y1|X1)

= 2nR
′

2−nI(U ;Y1|X1).

• For the forth term we look at the probability thatY n, which is generated according to∼ p(y), is

jointly typical with xn which is generated according to∼ p(x), un which is generated according to

∼ p(u), andxn
1 which is generated according to∼ p(x1). The probability of this event is bounded

by:

Pr(∪jE4,j) ≤
2nR

′

∑

j=2

P (E4,j)

≤
2nR

′

∑

j=2

2−nI(U,X,X1;Y )

= 2nR
′

2−nI(U,X,X1;Y ).
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• For the fifth term we look at the probability thatY n, which is generated according to∼ p(y|x1), is

jointly typical with xn which is generated according to∼ p(x|x1, u) where (un, xn
1 ) ∈ T

(n)
ǫ . The

probability of this event is bounded by:

Pr(∪jE5,j) ≤
2nR

′′

∑

j=2

P (E5,j)

≤
2nR

′′

∑

j=2

2−nI(X;Y |U,X1)

= 2nR
′′

2−nI(X;Y |U,X1).

• For the last term we look at the probability thatY n, which is generated according to∼ p(y), is jointly

typical with xn which is generated according to∼ p(x), un which is generated according to∼ p(u),

andxn
1 which is generated according to∼ p(x1). The probability of this event is bounded by:

Pr(∪j ∪i E6,j,i) ≤
2nR

′

∑

j=2

2nR
′′

∑

i=2

P (E6,j,i)

≤
2nR

′

∑

j=2

2nR
′′

∑

i′=2

2−nI(U,X,X1;Y )

= 2nR
′

2nR
′′

2−nI(U,X,X1;Y ).

Therefore we have the bounds:

R′ ≤ I(U ;Y |X1),

R′ ≤ I(U,X,X1;Y ),

R ≤ I(U,X,X1;Y ),

R′′ ≤ I(X ;Y |U,X1).



5-9

However, we want to find the bound onR alone. To do so we will useFourier-Mutskin elimination which

is a mathematical algorithm for eliminating variables froma system of linear inequalities.

Example 1

x1 ≤ 2 + x2, (23)

x1 ≥ 3− x2. (24)

For eachx2 there existsx1 such that (23) and (24) are satisfied if:

3− x2 ≤ 2 + x2, (25)

so we can reach an inequality forx2 alone:

x2 ≥
1

2
. (26)

In our setting, whereR′′ = R−R′ we have

R′ ≤ I(U ;Y |X1),

R′ ≤ R− I(X ;Y |U,X1).

So using the Fourier-Mutskin elimination we get

I(U ;Y |X1) ≥ R− I(X ;Y |U,X1),

therfore,

R ≤ I(U ;Y |X1) + I(X ;Y |U,X1).
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