
2: GMM and EM-1

Machine Learning

Lecture 2: GMM and EM

Lecturer: Haim Permuter Scribe: Ron Shoham

I. INTRODUCTION

This lecture comprises introduction to the Gaussian Mixture Model (GMM) and the

Expectation-Maximization (EM) algorithm. Parts of this lecture are based on lecture

notes of Stanford’s CS229 machine learning course by Andrew NG[1]. This lecture

assumes you are familiar with basic probability theory. The notation here is similar to

that in Lecture 1.

II. REVIEW: SUPERVISED CLASSIFICATION

In supervised classification, our target is to analyze the labelled training data we get,

and to use it to generate a model to map and classify new examples. Below is a general

model of supervised learning.

observation label

r1 c1

r2 c2
...

...

rN cN

r
=⇒ feature extraction

x
=⇒ statistical model

y
=⇒ decision

ĉ
=⇒

Here r represents the raw observation vectors with their respective label c, and ĉ is the

estimation of the model.

2: GMM and EM-2

1) Feature extraction: The goal of the feature extraction block is to extract the features

that contribute most to the classification and to eliminate the rest. For instance, in

speech recognition a well-known feature extraction technique is called Cepstrum,

and in texture classification, it is based on the discrete cosine transform (DCT) or

wavelet. All the above-mentioned features are based on the frequency domain. In

some cases, one might also use dimension reduction in addition to these features,

when, for example, the feature vector is too large or there is high redundancy. Two

good feature reduction methods are PCA and Autoencoders.

2) Statistical model: The goal of the statistical model is to represent the statistics of

each class, which allows the classes to be separated from each other. The statistical

model usually has some probability justification (such as the GMM) but sometimes

it might just be a separations technique of a different class. Usually a good statistical

model can also be used for additional tasks such as data compression or denoising.

3) Decision: The decision component is responsible for using the statistical model

output to classify the input. In some cases, we may generate more than one

statistical model, and the decision component uses all of the outputs.

The GMM is a statistical model which assumes that every probability distribution can

be approximated with a set of gaussians.

III. MIXTURES OF GAUSSIANS AND THE EM ALGORITHM

A. Gaussian Mixture Model (GMM) - Introduction

In supervised learning, GMM models the distribution of each class as a set of weighted

gaussians, P (xi, zi|c) = P (xi|zi, c)P (zi|c), where zi is a hidden random variable that is

not observed. One assumption that is made is that any distribution can be well modelled

by a set of gaussians. In the figure below, you can see three weighted gaussians in R
1

and their sum which models the distribution of a random variable. Another assumption

of the GMM is that any sample, x ∈ R
l, was generated from a single gaussian.

P (xi|zi = j, c) =
1

√

(2π)l|Σj |
exp(−1

2
(x− µj)

TΣ−1
j (x− µj)) (1)

2: GMM and EM-3

The probability of getting a specific gaussian given a class is

P (zi = j|c) = φj (2)

Note that φj ≥ 0, ∀j and that
∑k

j=1 φj = 1.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

feature - x

0

0.1

0.2

0.3

0.4

0.5

0.6

P
D

F

gaussian #1
gaussian #2
gaussian #3
mixture of gaussians

Fig. 1. Gaussian mixture model built from three weighted gaussians. The figure shows three weighted gaussians with

different µ and σ. The sum represents the mixture model.

From now on we only refer to a specific class c, since each class has its own model.

Our goal is to estimate the model’s parameters φj , µj and Σj , ∀j ∈ {1, ..., k}, and

we use maximum likelihood[2] criteria to maximize the expression P (Xn; θ), where θ

represents the parameters.

argmax
θ

P (xn; θ) = argmax
θ

log(P (xn|θ)) (3a)

2: GMM and EM-4

= argmax
θ

log(
∏

i

P (xi|θ)) (3b)

= argmax
θ

∑

i

log(P (xi|θ)) (3c)

We define ℓ as the log-likelihood function. To estimate our parameters, we can write the

log-likelihood of our data:

ℓ(φ, µ,Σ) =
m
∑

i=1

logP (xi;φ, µ,Σ) (4a)

=

m
∑

i=1

log

k
∑

j=1

P (xi|z = j;µj,Σj)P (z = j;φj, µj,Σj) (4b)

B. One Gaussian introduction and complete solution

First, let’s try to model our data using a single Gaussian. This example is in one

dimensional space.

ℓ(φ, µ,Σ) =

m
∑

i=1

log

k
∑

j=1

P (xi|z = j;µj, σj)P (z = j;µj, σj) (5a)

(a)
=

m
∑

i=1

logP (xi|µ, σ) (5b)

=

m
∑

i=1

log
1√
2πσ2

e−
(xi−µ)2

2σ2 (5c)

Where (a) follows from k = 1. Now lets take derivative in order to find the parameters

which maximizes the log-likelihood. First we take derivative with respect to µ

∂

∂µ
ℓ(φ, µ,Σ) = − 1

2σ2

m
∑

i=1

(xi − µ) (6a)

= 0 (6b)

Therefore

µ̂ =
1

m

m
∑

i=1

xi (7)

2: GMM and EM-5

We perform the same thing with respect to σ2

∂

∂σ2
ℓ(φ, µ,Σ) =

∂

∂σ2

m
∑

i=1

(−1

2
log(σ2)− 1

2σ2
(xi − µ)2) (8a)

= − m

2σ2
+

m
∑

i=1

(xi − µ)2

2(σ2)2
(8b)

= 0 (8c)

We get

σ̂2 =
1

m

m
∑

i=1

(xi − µ)2 (9)

C. GMM parameters estimation and EM motivation

Two Gaussians example: Now lets try to find an analytic solution to maximize the

log-likelihood of two Gaussians model.

ℓ(φ, µ,Σ) =

m
∑

i=1

log

k
∑

j=1

P (xi|z = j;µ, σ)P (z = j; θ) (10a)

=

m
∑

i=1

log(φ1N (xi;µ1, σ
2
1) + φ2N (xi;µ2, σ

2
2)) (10b)

φj stands for P (z = j; θ). By differentiating (10b) with respect to µ1, we obtain

m
∑

i=1

1

φ1N (xi;µ1, σ
2
1) + φ2N (xi;µ2, σ

2
2)
φ1N (xi;µ1, σ

2
1)
xi − µ1

σ2
= 0 (11)

This we cannot solve in a closed form to get a clean maximum likelihood expression.

Therefore, we use the Expectation-Maximization (EM) algorithm.

D. Formal look at the EM algorithm[7]

The EM algorithm was first explained in a 1977 paper, Maximum Likelihood from

Incomplete Data via the EM Algorithm [3]. It is an iterative algorithm for using maximum

likelihood to estimate the parameters of a statistical model with unobserved (hidden)

2: GMM and EM-6

variables (also called latent variables where lateo is “lie hidden” in Latin). It has two

main steps. First is the E-step, which stands for expectation. We compute some probability

distribution of the latent variables so we can use it for expectations. Second comes the

M-step, which stands for maximization. The EM algorithm find a local maximum and

that depends on the initial model that we start with.

Problem Definition: Let xn be a random vector distributed i.i.d. that we observe. Let

Zn be a hidden vector that Xn depends on. s.t. P (xn|zn) =∏n

i=1 p(xi|zi) also distributed

i.i.d.. i.e., P (zn) =
∏n

i=1 P (zi). The distribution of Xn and Zn have some parameters θ

that we are interested to find. In GMM, for instance, Zi stands for the Gaussian number

of sample i, i.e., zi ∈ {1, 2, ..., k} where k is the total number of Gaussians. Our goal is

to maximize the log-likelihood

logPXn(xn; θ) = log

(

∑

zn

PXn,Zn(xn, zn)

)

(12)

In a shorter notation simply write

log(xn; θ) = log

(

∑

zn

P (xn, zn)

)

. (13)

EM Algorithm: The following algorithm is the EM algorithm that is an iterative

algorithm and is based on two steps: Expectation and Maximization steps.

EM Algorithm:

1) function EM(xn, θ(0))

2) for iteration t ∈ 1, 2, ... do

3) Q(t)(zi) = P (zi|xi; θ
(t−1)) ∀i = 1, 2, ..., n ∀zi ∈ Z E-step

4) θ(t) = argmaxθ EQ
(t)
Zn
[log(P (xn, Zn; θ))] M-step

5) if logP (xn|θ(t))− logP (xn|θ(t−1)) < ǫ then

6) return θ(t)

2: GMM and EM-7

The stopping criteria can be changed. Can be either the one that is written,

logP (xn|θ(t))−logP (xn|θ(t−1)) < ǫ, or a fixed number of iterations or ||θ(t))−θ(t−1))|| <
ǫ for some norm || · ||.

Derivation of the EM algorithm: Now, we are going to show that in each iteration

the algorithm increases the log likelihood, i.e., logP (xn|θ(t)) increases as t increases.

Hence, the EM algorithm convergence to a local minimum that depends on the initial

model θ(0).

For any Q(zn) we have

logP (xn; θ(t)) = log

(

∑

zn

Q(zn)
P (xn, zn; θ(t))

Q(zn)

)

(14)

= log

(

EQZn

[

P (xn, Zn; θ(t))

Q(Zn)

])

(15)

(a)

≥ EQZn

[

log
P (xn, Zn; θ(t))

Q(Zn)

]

(16)

Where (a) follows Jensen’s inequality. Now, using algebra and information measure we

obtain

EQZn

[

log
P (xn, Zn; θ(t))

Q(Zn)

]

= EQZ

[

log(P (xn; θ(t)))
]

+ EQZn

[

log
P (Zn|xn; θ(t))

Q(Zn)

]

= log(P (xn; θ(t))) + EQZn

[

log
P (Zn|xn; θ(t))

Q(Zn)

]

(17)

= log(P (xn; θ(t)))− D(QZn||PZn|xn,θ(t)) (18)

Hence, we can choose Q(zn) = P (zn|xn, θ(t)), i.e., Q(zi) = P (zi|xi, θ
(t)) and we obtain

that (a) in (16) is with equality. So now when Q(zn) is fixed, we can maximize over all

θ the following expression

θ(t+1) = argmax
θ

EQZn

[

log
P (xn, Zn; θ)

Q(Zn)

]

= argmax
θ

EQZn [logP (xn, Zn; θ)] ,

Hence we have

log(P (xn; θ(t+1)))−D(QZn ||PZn|xn,θ(t+1))
(a)
= EQZn

[

log
P (xn, Zn; θ(t+1)

Q(Zn)

]

(b)

≥ EQZn

[

log
P (xn, Zn; θ(t)

Q(Zn)

]

2: GMM and EM-8

(c)
= logP (xn; θ(t))

where (a) and (c) follows from the E step derivation, (b) from the M step. Finaly the last

sequence of equations implies that logP (xn; θ(t+1)) ≥ logP (xn; θ(t)) because divergence

is non negative.

E. Expectation Maximization (EM) application for GMM

Let’s start with the E-step. We define weights w(j, i)
△
= P (z = j|xi; θ). The weights

are ’soft’ assignment of the sample xi to the Gaussian j.

w(j, i) = P (j|xi; θ) (19a)

=
P (j, xi; θ)

P (xi; θ)
(19b)

=
P (j; θ)P (xi; j, θ)
∑

l P (xi, l; θ)
(19c)

=
P (j; θ)N(xi;µj, σ

2
j)

∑

l P (l; θ)N(xi;µl, σ
2
l)

(19d)

Now, we wish find the new parameters θ which maximize the log-likelihood with

respect to the expectations (the M-step). First let’s define φ(j)
△
= P (j; θ). The model

parameters are θ = {φ(j), µj, σ
2
j}.

argmax
θ

EQ(Z)[log(PX,Z(x, z; θ))] = (20)

= argmax
φ(j),µj ,σ

2
j

m
∑

i=1

∑

j

w(j, i) logP (j, xi; θ) (21)

= argmax
φ(j),µj ,σ

2
j

m
∑

i=1

∑

j

w(j, i) log(φ(j)N(xi;µj, σ
2
j))

= argmax
φ(j),µj ,σ

2
j

m
∑

i=1

∑

j

w(j, i)(log φ(j) + log
1

√

2πσ2
j

− (xi − µj)
2

2σ2
j

)

Deriving with respect to µj and comparing to 0 gives

µj =

∑

iw(j, i)xi
∑

iw(j, i)
(22)

2: GMM and EM-9

Performing the same thing with respect to σ2
j gives

σ2
j =

∑

i(xi − µj)
2w(j, i)

∑

i(w(j, i))
(23)

Finding the optimal φ(j) is a bit more difficult since it is a probability distribution

function and therefore it has some constrains. The constrains are

∑

j

φ(j) = 1

φ(j) ≥ 0 ∀j

The solution for this comes from the field of convex optimization. Further discussion

about convex optimization problems and Lagrange multipliers can be found in the

appendix and in Boyd’s book[4]. Let’s define the problem as a standard convex

optimization problem (defintion 3)

minimize −
m
∑

i=1

k
∑

j=1

w(j, i) logφ(j)

subject to − φ(j) ≤ 0, 1 ≤ j ≤ k

∑

j

φ(j) = 1

The Lagrange multipliers (definition 4) are

L(φ(j), λ, ν) = −
m
∑

i=1

k
∑

j=1

w(j, i) logφ(j)−
k
∑

j=1

λjφ(j) + (

k
∑

j=1

φ(j)− 1)ν (24)

Therefore the KKT conditions (theorem 2) are

1) ∇φL(φ
∗, λ∗, ν∗) = 0

2) −φ∗(j) ≤ 0 , ∀j
3)
∑

j φ(j) = 1

4) λ∗
jφ

∗(j) = 0 , ∀j
5) λ∗

j ≥ 0 , ∀i
After deriving the Lagrangian with respect to a specific φ(j) we get

φ(j) =

∑m

i=1w(j, i)

ν
(25)

2: GMM and EM-10

We do not know ν, so we use the fact that
∑

j φ(j) = 1

∑

φ(j) =

∑

j

∑m

i=1w(j, i)

ν
= 1 (26)

Therefore

φ(j) =

∑n

i=1w(j, i)
∑m

i=1

∑k

j=1w(j, i)
(27)

=

∑n

i=1w(j, i)

n
(28)

We can see that the KKT conditions holds.

Algorithm:

E-step: for each i, j

w(j, i) : = P (zi = j|xi;φ, µ,Σ) (29a)

=
φ(j)P (xi|zi = j;µj,Σj)

∑k

l=1 φ(l)P (xi|zi = l;µl,Σl)
(29b)

M-step: for each j

φ(j) :=
1

m

m
∑

i=1

w(j, i) (30)

µj :=

∑m

i=1w(j, i)xi
∑m

i=1w(j, i)
(31)

Σj :=

∑m

i=1w(j, i)(x
(i) − µj)(xi − µj)

T

∑m

i=1w(j, i)
(32)

Now we must consider when to stop the algorithm. One way is to repeat the two steps

until convergence θ(t+1) ≈ θ(t). Another option is to repeat them for a fixed number

of times. Repeating the steps a fixed number of times can prevent over-fitting of the

training data set.

2: GMM and EM-11

F. K-means algorithm

K-means is very similar to EM except that it gives a ’hard’ decision for each sample

to the centroid to which it belongs. Below we discuss K-means briefly. We are given

a training set {x(1), ..., x(m)} and we wish to group it into K different components.

Algorithm:

1) Initialize centroids µ1...µk ∈ R
n

2) Repeat until convergence: {
a) for every i, set

c(i) := argmin
j

‖x(i) − µj‖2 (33)

b) for each j, set

µj :=

∑m

i=1 1{c(i) = j}x(i)

∑m

i=1 1{c(i) = j} (34)

}
To initiate the centroid, we can choose K random training samples. There are other

initialization methods. The inner loop assigns each sample to the ’closest’ centroid, and

moves the centroid to the mean of the points assigned to it.

The K-means algorithm guarantees convergence to a local optima (except in very

rare cases, where the K-means oscillate between a few different values), but it does not

guarantee convergence to a global optima. A common way to deal with this problem is

to run K-means many times with different initiations, and then to pick the one with the

lowest distortion. K-means is often used to initiate GMM modelling.

A common use of the K-means algorithm is for initial estimation for GMM parameters.

We use the centroids to initiate the Gaussian’s µ and set an arbitrary Σ and φ.

G. Tips and additional use of GMM

1) Choosing the number of GMM components: [6] Choosing the number of compo-

nents for modelling the distribution is an important issue. There is a trade-off between

choosing too many components which may cause over-fitting (for example, what happens

if we use the number of samples?), and choosing too few, which can render a model that

2: GMM and EM-12

is not flexible enough. Selecting the number of components is crucial for unsupervised

segmentation tasks, in which each component represents a separate class. However, when

each GMM models a different class and the segmentation is supervised, the selection of

the number of components becomes less critical.

2) Full or diagonal covariance?: [5] In the model that is the focus of this lecture,

we used unrestricted covariance for the GMMs. The GMM can also be restricted to have

diagonal covariance which has two practical advantages:

• There are fewer parameters to be estimated.

• Calculation of the inverse matrix is trivial.

In some applications (e.g., speaker verification), the diagonal model is sufficient. The

obvious disadvantage of assuming diagonality, however, is that the different features

may in practice be strongly correlated. In this case, the model might be incapable of

representing the feature distribution accurately. The figure below illustrates this point.

Fig. 2. Modelling the distributions of two different features(first column) using a full covariance(second column) and

a diagonal covariance(third column)

2: GMM and EM-13

On the first row, we see that the features are highly correlated, and therefore the

GMM must use a full covariance matrix. On the second row, the difference is far less

pronounced, and it seems that a diagonal covariance matrix is sufficient.

3) GMM for unsupervised learning: So far we only talked about using GMM for

supervised learning, where each sample has its own label, and a model is built for each

class. In many cases, GMM is used for unsupervised clustering. It is useful to gather data

from a group into sub-groups that can be modelled well by a gaussian distribution. Using

GMM, we can cluster the data into sub-groups that do not have labels or identity. For

example, we have a class with n students and we want to split it into three different study

groups according to student averages. An addition application of GMM in unsupervised

learning is the Universal Background Model (UBM). In the UBM, we first generate a

general class-independent statistical model by using all samples. We often use the UBM

to generate the class-dependent models. This is particularly useful for cases in which we

lack a sufficient number of samples of the class we want to identify, but we have many

samples of other classes. A good example of this application is in the field of speaker

verification, when we may have only a few voice samples of the person we are trying to

identify.

2: GMM and EM-14

APPENDIX

REVIEW: CONVEX FUNCTION AND JENSEN’S INEQUALITY[4]

Definition 1 (convex set) :

A set C is convex if, for any x, y ∈ C and θ ∈ R with 0 ≤ θ ≤ 1:

θx+ (1− θ)y ∈ C. (35)

Fig. 3. The hexagon on the left is convex. on the right is a non-convex set.

Definition 2 (convex function) :

A function f : Rn → R is convex if domf is a convex set and if for all x, y ∈ domf ,

and θ with 0 ≤ θ ≤ 1, we have

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y) (36)

It is called strictly convex if

f(θx+ (1− θ)y) < θf(x) + (1− θ)f(y) (37)

f is (strictly) concave if −f is (strictly) convex.

Definition 3 (Convex optimization problem) :

The notation

minimize f0(x)

2: GMM and EM-15

subject to fi(x) ≤ 0, 1 ≤ i ≤ m

hj(x) = 0, 1 ≤ j ≤ k

describes the problem of finding the x that minimizes f0(x) among all x that satisfy the

constrains. It is called a convex optimization problem if f0, ..., fm are convex functions

and h1, ..., hk are affine.

Definition 4 (Lagrangian) :

For a constrained optimization problem as seen in definition 3 we define the Lagrangian

L(x, λ, ν) = f0(x) +
m
∑

i=1

λifi(x) +
k
∑

j=1

νjhj(x) (38)

The idea of the Lagrangian duality is to take the constrains into account by augmenting

the objective function with a weighted sum of the constraint functions.

Theorem 1 (Jensen’s Inequality) :

Named after mathematician Johan Jensen, the theorem relates the value of a convex

function of an integral to the integral of the convex function.

In the context of probability theory: if X is a random variable and f is a convex function,

f(E[x]) ≤ E[f(x)]. (39)

Equality holds if and only if x is constant or f is linear.

Theorem 2 (KKT conditions) :

For an optimization problem with constrains, which we transform to a Lagrangian, let’s

assume that a strong duality holds (discussion about duality is out of our scope, and can

be found in Boyd’s book). Then the following condition holds

∇xL(x
∗, λ∗, ν∗) = 0

fi(x
∗) ≤ 0 , ∀i

hj(x
∗) = 0 , ∀i

λifi(x
∗) = 0 , ∀i

2: GMM and EM-16

λ∗
i ≥ 0 , ∀i

where x∗ and (λ∗, ν∗) are a primal and dual optimal points with zero duality gap. This

are called Karush-Kuhn-Tucker conditions.

You can find a more rigorous discussion of convex optimization in Boyd’s book on

convex optimization in chapters 1-5[4].

REFERENCES

[1] Andrew NG’s machine learning course. Lectures on Unsupervised Learning, k-means clustering, Mixture of

Gaussians and The EM Algorithm http://cs229.stanford.edu/materials.html.

[2] Haim Permuter’s Machine leaning course, lecture 1 http://www.ee.bgu.ac.il/∼haimp/ml/lectures.html.

[3] Arthur Dempster, Nan Laird, and Donald Rubin (1977) Maximum Likelihood from Incomplete Data via the EM

Algorithm https://www.jstor.org/stable/2984875.

[4] Stephan Boyd’s Convex Optimization https://web.stanford.edu/∼boyd/cvxbook/bv cvxbook.pdf.

[5] Haim Permuter, Joseph Francos, Ian Jermyn, A study of Gaussian mixture models of color and texture features

for image classification and segmentation 3.4 http://www.ee.bgu.ac.il/∼francos/gmm seg f.pdf.

[6] Haim Permuter, Joseph Francos, Ian Jermyn, A study of Gaussian mixture models of color and texture features

for image classification and segmentation 3.5 http://www.ee.bgu.ac.il/∼francos/gmm seg f.pdf.

[7] Ramesh Sridharan’s Gaussian mixture models and the EM algorithm

https://people.csail.mit.edu/rameshvs/content/gmm-em.pdf.

http://cs229.stanford.edu/materials.html
 http://www.ee.bgu.ac.il/~haimp/ml/lectures.html
https://www.jstor.org/stable/2984875
https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
http://www.ee.bgu.ac.il/~francos/gmm_seg_f.pdf
http://www.ee.bgu.ac.il/~francos/gmm_seg_f.pdf
https://people.csail.mit.edu/rameshvs/content/gmm-em.pdf

	Introduction
	Review: Supervised classification
	Mixtures of Gaussians and the EM algorithm
	Gaussian Mixture Model (GMM) - Introduction
	One Gaussian introduction and complete solution
	GMM parameters estimation and EM motivation
	Formal look at the EM algorithmEMramesh
	Expectation Maximization (EM) application for GMM
	K-means algorithm
	Tips and additional use of GMM
	Choosing the number of GMM components
	Full or diagonal covariance?
	GMM for unsupervised learning

	Appendix: Review: convex function and Jensen's inequalityboyd
	References

