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Machine learning

Appendix 1

Lecturer:Haim Permuter Scribe: Gal Rattner

I. INFORMATION MEASURES

A. Entropy

Definition 1 (Entropy) The entropy of a discrete random variable X with a finite

alphabet is defined as

H(X) , E[− logPX(X)]

= −
∑

x∈X

PX(x) logPX(x). (1)

The entropy resembles the uncertainty of the random variable, and in information theory

used to represent the number of bits required to describe the random variable, using base

2 logarithm.

Example 1 (Entropy of a Bernoulli random variable) Let X ∼ Bern(p), i.e.,

Pr {X = 1} = p and Pr {X = 0} = 1− p.
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Figure 1. Binary Entropy Hb(p). The figure depicts the entropy of a Bernoulli random variable with parameter

0 ≤ p ≤ 1.

H(X) = −p log p− (1− p) log(1− p). (2)
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We denote the entropy of a Bernoulli random variable with parameter p as Hb(p). Fig. 1

depicts Hb(p) as a function of p. Note that Hb(0) = Hb(1) = 0, the maximum is obtained

at p = 0.5, Hb(p) = Hb(1− p) and the curve is concave.

We can now refer to the general case of discrete random variable X , and note that the

next assumptions stand:

(a) H(X) ≥ 0.

(b) H(X) = 0 ⇐⇒ X is a constant (deterministic).

(c) H(X) curve is concave.

(d) H(X) ≤ log |X | where X is the alphabet of X .

Where (a) follows directly from 0 ≤ P (x) ≤ 1 and therefore logP (x) ≤ 0, (b) follows

from the fact that for constant x, P (x) ∈ {0, 1} either P (x) = 0 or logP (x) = 0 and

(d) can be proved using the divergence definition as presented forward in this paper. For

full proofs see lecture 1 of Information theory course [2] or T. Cover’s book [3].

Example 2 (Mean Length) Let X be a random variable with X = {1, 2, 3, 4}, and

X =



























1 p(x) = 1/2

2 p(x) = 1/4

3 p(x) = 1/8

4 p(x) = 1/8

We can now consider a compressed coding method, different than the standard code, i.e.

x p(x) standard code compressed code

1 1

2
00 0

2 1

4
01 10

3 1

8
10 110

4 1

8
11 111

Note that the expected code length obtained by the compressed coding equals H(X), i.e.

E [l(X)] =
1

2
· 1 +

1

4
· 2 +

1

8
· 3 +

1

8
· 3

= 1
3

4
[bits]
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= −
1

2
log

1

2
−

1

4
log

1

4
−

1

8
log

1

8
−

1

8
log

1

8

= H(X). (3)

B. Divergence

Definition 2 (Kullback-Leibler divergence) Consider two different probability mass

functions p(x) and q(x), over the same alphabet X . The Kullback-Leibler divergence

also known as relative entropy is defined as

D(PX ||QX) ,
∑

x

P (x) log
P (x)

Q(x)

= EP

[

log
P (X)

Q(X)

]

. (4)

Note that the next assumptions stand for the KL-divergence:

(a) D(PX ||QX) is convex in the pair (P,Q)

(b) D(PX ||QX) ≥ 0.

(c) D(PX ||QX) = 0 ⇐⇒ px = qx.

Where (a) is shown in [2], (b) follows from Jensen’s inequality and the fact that
∑

x P (x) = 1, and (c) from strict concavity of the logarithm function. For full proofs see

lecture 2 of Information theory course [2] or T. Cover’s book [3]. Consider the task of

binary classification using a single neuron, where y ∈ {0, 1}. In such case, we can think of

y and a(x) as two different probability functions over the class of x, denoted as cx. We can

now use the notation y = P{Classx = 1} = p(cx) for the true classification probability,

and a(x) = P{ ˆClassx = 1} = q(ĉx) for the estimated classification probability from the

net. Recall that the cross entropy cost for a single neuron was defined as

C(x, y) = −y log a(x)− y log a(x)

= −y log σ(z)− y log σ(z). (5)

Therefore using the definition of the two probability mass functions above, we get

−
∑

cx

p(cx) log q(cx) = −
∑

cx

p(cx) log
q(cx)

p(cx)
· p(cx)
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=
∑

cx

p(cx) log
q(cx)

p(cx)
−
∑

cx

p(cx) log p(cx)

= D(P ||Q) +H(P ). (6)

So far we applied the cross entropy cost to the case of classifying with two possible

classes. Now consider the task of classification where the number of possible classes

is larger than two, i.e. y ∈ {1, . . . , K}, K > 2. We would like the net to produce a

probability vector a(x), with i = 1, . . . , K elements all summed to 1, s.t. ∀i ai(x) will

represent the probability that the input x is of class i. The softmax regression layer

is commonly used as an output layer in such casses, it is presented in Figure (2) and

described with more details in lecture 3. The cross entropy cost in the multiple classes
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softmax

x1

x2

x3

b

z1 = w1x1 + b

z2 = w2x2 + b

zk = wkxk + b

a1(x) =
ez1∑
j e

zj

a2(x) =
ez2∑
j e

zj

a3(x) =
ez3∑
j e

zj

ak(x) =
ezk∑
j e

zj

Figure 2. The softmax layer.

case is given by

C(x, y) = −

K
∑

i=1

1{y = i} log ai(x)

= − log ai=y(x), (7)

where each element in the output vector is in range [0, 1].

For further read please see Information Theory course’s lectures [2].
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