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Abstract— This paper studies the problem of the distributed
compression of correlated sources with an action-dependent joint
distribution. This class of problems is, in fact, an extension of the
Slepian–Wolf model, but where cost-constrained actions taken by
the encoder or the decoder affect the generation of one of the
sources. The purpose of this paper is to study the impact of
actions on the achievable rates. In particular, two cases where
transmission occurs over a rate-limited link are studied; case A
for actions taken at the decoder and case B where actions are
taken at the encoder. A complete single-letter characterization of
the set of achievable rates is given in both cases. Furthermore, a
network coding setup for the case where actions are taken at the
encoder is investigated. The sources are generated at different
nodes of the network and are required at a set of terminal nodes,
yet transmission occurs over a general, acyclic, directed network.
For this setup, generalized cut-set bounds are derived, and a
full characterization of the set of achievable rates using single-
letter expressions is provided. For this scenario, random linear
network coding is proved to be optimal, even though this is not
a classical multicast problem. In addition, two binary examples
are investigated and demonstrate how actions taken at different
nodes of the system have a significant effect on the achievable
rate region, when compared with a naive time-sharing strategy.

Index Terms— Actions, correlated sources, distributed com-
pression, network coding, random linear network coding,
Slepian-wolf source coding.

I. INTRODUCTION

THE field of distributed encoding and joint decoding of
correlated information sources is fundamental in informa-

tion theory. In their seminal work, Slepian and Wolf (SW) [1]
showed that the total rate used by a system which distributively
compresses correlated sources is equal to the rate that is
used by a system that performs joint compression. An exten-
sion of this model for general networks was studied by
Ho et al. [2], who showed that this property is maintained,
using a novel coding scheme called Random Linear Network
Coding (RLNC).
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In past studies, the joint distribution of sources has been
perceived as given by nature; however, we pose the question,
what if the system can take actions that affect the generation
of sources?

We model the system describing this scenario as correlated
sources with actions with the following source distribution: the
source X is a memoryless source that is distributed according
to PX , while the other source, Y , has a memoryless conditional
distribution, PY |X,A, that is conditioned on the source X and an
action A. The actions are constrained according to a given cost
function that determines the nature of actions in the system.

Two possible motivating scenarios for the suggested setting
are the following:

1) Consider a sensor network where two measurements of
temperature are required at a set of terminal nodes. The
first measurement determines whether the temperature
is above or below a coarse threshold value and is
generated by nature; the second measurement may be
either a repeated coarse measurement or a new indepen-
dent measurement that corresponds to a finer resolution
of temperature within the correct coarse region. The
system is constrained such that a minimum percentage
of the second sensor measurements are allocated to fine
measurements.

2) A backup system consists of two sub-units that may
back up data on a local device or not. The first unit
is controlled ahead of time and thus we have no control
over its operation. The operation of the second backup
unit can be controlled via actions that effect the nature
of its operation. The actions that are taken by the system
subject to the observed operations of the first unit. Here,
the system is constrained such that the actions that are
taken by the units are different during a fraction of the
operation time. Lastly, details of the operation of the two
sub-units should be transmitted to several decentralized
nodes, which may need this information in the case of
a recovery requirement.

The information-theoretical question that naturally arises from
these examples is how the system should choose actions in
order to minimize the transmission rates, subject to the given
constraints. The given scenarios will serve as a basis for two
examples that will be studied in Section IV, where it is shown
that actions might affect the rate region in a non-trivial manner.

In this paper, two concepts are covered regarding the inves-
tigated model; the first is a classical multi-user setup where
transmission occurs over rate-limited links. Here, actions can
be performed at different nodes of the system: in case A
actions are taken at the decoder (Fig. 1), and in case B
actions are taken at the encoder, as described (Fig. 2). In the
second approach, we extend the transmission scenario from
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Fig. 1. Case A - Correlated sources with actions taken at the decoder. The
actions are based on the index T1 sent by encoder 1 and affect the generation
of the source Y n .

Fig. 2. Case B - Correlated sources with actions taken at the encoder. The
actions are based on the source Xn and affect the generation of the source Y n .

rate-limited links to a given directed, acyclic network. This
approach is motivated by the needs of large-scale networks
that are used to communicate source information to multiple
end-nodes.

The first case we consider is depicted in Fig. 1, where
actions are taken at the decoder: based on its source obser-
vation Xn , which is independent and identically distributed
(i.i.d.) according to ∼ PX , encoder 1 gives an index T1(Xn)
to the decoder. Having received the index T1, the decoder
chooses the action sequence An . Nature then generates the
other source sequence, Y n , which is the output of a discrete
memoryless channel PY |X,A, whose input is the pair (Xn, An).
Based on its observation Y n , an index T2(Y n) is sent to the
decoder by encoder 2. The reconstruction sequences (X̂n, Ŷ n)
are then generated at the decoder, based on the indices that
were given by the encoders. For this case, a single-letter
characterization of the optimal rate region is presented in
Theorem 1.

The second case we consider is depicted in Fig. 2, where
actions are taken at encoder 1: based on its source observa-
tion Xn , which is i.i.d. ∼ PX , the first encoder chooses an
action sequence An . The other source, Y n , is then generated
as in case A and is made available at encoder 2. Each encoder
now chooses an index to be given to the decoder, based on its
source observation. The reconstruction sequences (X̂n, Ŷ n) are
then generated at the decoder based on the indices that were
given by the encoders. This case is found to display better
performance than case A, which is is intuitively clear since in
case A actions are constrained to be a function of T1, while
in case B actions are a function of the explicit source Xn .
In Theorem 2, the optimal rate region for this case is
characterized by single-letter expressions. In Section IV,
we demonstrate and prove, in two binary examples, that

performing actions at the encoder or the decoder might affect
the optimal rate region, and also display a significant advan-
tage compared to a naive time-sharing strategy.

The problem of multi-terminal source coding is funda-
mental in information theory and is still an open problem
[3], [4]; among its fully-characterized special cases are the
Wyner-Ziv (WZ) [5], Ahlswede-Korner (AK) [6] and SW [1]
settings. The connection of this open problem and actions
was first introduced in [7] by considering an action-dependent
WZ setting. This setting was useful for modelling a scenario
where the user can perform actions that affect the quality of
the side information (SI) available to the decoder. This model
was termed the Vending Machine (VM), and actions could
be performed at the encoder or the decoder. In the current
paper, the action-dependent version of the SW problem is
studied, and we also remark on the difficulty when considering
an action-dependent AK problem in Section VII. From the
operational point, the extended SW and the AK problems
differ from the VM mainly in the multi-user nature of their
setting; specifically, their setting consists of two rates which
imply a two-dimensional rate region.

In the settings that are investigated here and in the VM,
the action-dependent sequence plays a different role; in our
current setting, this sequence is a source of information and,
thus, we also have a reconstruction constraint on the source
sequence at the decoder, while in the VM the affected sequence
is a SI that is available at the decoder. Moreover, in both
settings the generated source, Y n , is not distributed i.i.d. since
the actions’ sequence should not admit the i.i.d. property.
Hence, our setting deals with the lossless compression of the
source Y n that might have a memory, whereas in the VM it
is made available to the decoder by definition. Despite the
different roles of the action-dependent sequence, one can find
the following similarity between the models: if we take the
link between encoder 2 and the decoder to be of infinite
capacity, it follows that the sequence Y n is available to the
decoder and, as a by-product, the reconstruction constraint is
satisfied. For this special case, our problem is reduced to the
lossless transmission of the source X to the decoder, that is, the
VM setting.

The optimal coding of case A is given by a simple and
intuitive scheme that reveals the SW multi-user nature of our
setting. In the achievability proof of case B, we utilize the VM
coding together with a lossless transmission of the source Y n

to achieve one of the corner points and the other corner point
is achieved by applying standard lossless coding arguments.
For case B, we also provide an alternative achievability proof
that is independent of the VM coding. Specifically, as case B
is a special case of the investigated network, we obtain an
alternative proof directly from the novel coding scheme that
is provided for the general network scenario and is based on
RLNC.

Various studies on actions in source coding can be found
in the literature: in [8], Zhao et al. studied a model where
an action-dependent source is generated and reconstruction
of the source is required at terminal node. In [9], Simeone
considered a VM model, but with sources that are not mem-
oryless and with actions that might also be affected by causal
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Fig. 3. Correlated sources in general networks with actions. Based on source Xn , node s1 performs actions that affect the generation of Y n . Transmission
of the encoded sources occurs over an arbitrary acyclic directed network. Both sources are required at a set of terminal nodes. Note, the dashed arrow is the
actions’ cost-constrained link.

observation of the SI. In [10], Kittichokechai et al. considered
a model where actions affect the generation of two-sided SI
sequences; one is available to the encoder and the other one
to the decoder. In [11], Ahmadi et al. studied a new role of
actions, where an additional decoder observes a function of the
actions and should reconstruct the source information. In [12],
Chia et al. studied a multi-user setup of the VM; two decoders
can observe different SI sequences, where both sequences
are generated according to the same performed actions. More
studies on actions in channel coding can be found in [13]–[16].
In all the cited papers, actions were proved to be efficient, not
only for modeling interesting scenarios, but also for improving
the transmission rates. However, to the best of our knowledge,
actions have not been previously studied in a general network
coding setup.

In the network scenario, the case where actions are taken at
the encoder is investigated (Fig. 3). The nodes s1 and s2 play
the role of the encoders, as in case B, and source generation
remains the same. However, transmission occurs over a gen-
eral, acyclic, directed network. Each link in the network has
a known capacity, which represents a noiseless link in units
of bits per unit time. All intermediate nodes in the network
are allowed to perform encoding based on the messages on
their input links, and a set of destination nodes, D, is required
to reconstruct both sources in a lossless manner. The single-
letter characterization for the set of achievable rates for this
problem is derived by, first, introducing the generalized cut-
set bounds for this setting and, then, the tightness of these
bounds is completed by providing a novel coding scheme that
combines techniques of random coding, random binning and
RLNC.

The optimal coding scheme for this setting is based on the
random generation of the actions’ codebook together with
RLNC for the transmission over the network. Throughout
the direct proof we differentiate between two cases; specif-
ically, the cases are determined by the sign of the expression
I (X; A) − I (Y ; A). The construction of the actions at the
encoder will be similar to a WZ coding when the sign is
positive, and to the Gel’fand and Pinsker [17] scheme for a
negative sign. When both sources are generated, RLNC in a
finite field is used for transmission in the network as in [2].
For our case, the inputs to the network are sources together
with the chosen actions’ sequence.

The decoding procedure that was applied in [2] was based
on min-entropy or maximum a posteriori procedures that
exploit the i.i.d. nature of the sources. In our setting, the
triplet (Xn, An, Y n) is not i.i.d. since actions are a function of
the complete source sequence Xn and, therefore, we adopt a
strong typicality decoding procedure. Moreover, the analysis
of the probability of error for the proposed coding required
a derivation of an upper bound on the probability that two
different inputs to a randomized linear network induce the
same output at a receiver node. Based on the result in
[2, Appendix A], we derive an upper bound on the probability
of this event that can fit a broader class of network cod-
ing problems, including our problem. The generalized upper
bound appears in Lemma 1, followed by an alternative proof
and, finally, it is demonstrated through an example how this
upper bound is an efficient tool when solving network coding
problems.

It is known that linear network coding is optimal in multi-
cast problems, as shown by Ahlswede et al. [18]. Following
this result, the RLNC technique was introduced by Ho et al.
in [2] for a model of the compression of correlated sources’
over an arbitrary network. Our model does not fall into the
class of multicast problems since no requirement for actions
reconstruction is defined, yet it is very clear that the actions
taken affect the rate region. Moreover, our set of achievable
rates includes terms of mutual information, which are not
typical in multicast problems. Nevertheless, we prove that
RLNC achieves optimality in our network model as well.

The remainder of the paper is organized as follows.
In Section II, we formulate the problem for all communication
models. Section III summarizes our main results regarding
the optimal rate regions for case A, case B and the set of
achievable rates for the general network scenario. Section IV
presents two binary examples. Section V outlines the proofs
of case A and case B. A detailed proof for the network
coding scenario is provided in Section VI. Finally, Section VII
summarizes the main achievements and insights presented
in this work along with suggestions for possible future
work.

II. NOTATION AND PROBLEM DEFINITION

Let X be a finite set, and let X n denote the set of all
n-tuples of elements from X . An element from X n is denoted
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by xn = (x1, x2, . . . , xn). Random variables are denoted by
uppercase letters, X , and the previously mentioned notation
holds also here, e.g. Xn = (X1, X2, . . . , Xn). The probability
mass function of X , the joint distribution function of X and Y ,
and the conditional distribution of X given Y will be denoted
by PX , PX,Y and PX |Y , respectively. The notation �x� stands
for the smallest integer greater than or equal to x and, lastly,
ᾱ stands for 1 − α, with α ∈ [0, 1].

We consider a system of correlated sources with actions. Let
us refer to the case where the decoder is allowed to perform
actions as case A and to the case where encoder 1 performs
actions as case B. We provide here a definition for the setting
of case A, while the definition for the setting of case B is
straightforward. The source sequence Xn is such that Xi ∈ X
for i ∈ [1, n] and is distributed i.i.d. with a pmf PX . The first
encoder measures a sequence Xn and encodes it in a message
T1 ∈ {1, . . . , 2nRX }, which is transmitted to the decoder. The
decoder receives the index T1 and selects an action sequence,
where An ∈ An . The action sequence affects the generation
of the other source sequence Y n , which is the output of a
discrete memoryless channel without feedback PY |X,A with
inputs of (Xn, An). Specifically, given Xn = xn and An = an,
the source sequence Y n is distributed as

p(yn|xn, an) =
n∏

i=1

p(yi |xi , ai ). (1)

Encoder 2 receives the observation yn and encodes it in
a message T2 ∈ {1, . . . , 2nRY }. The estimated sequences
(X̂n, Ŷ n) are then obtained at the decoder as a function of
the messages T1 and T2.

For the settings described above, a (2nRX , 2nRY , n) code
for a block of length n and rate pairs (RX , RY ) consists of
encoding functions:

T1 : X n → [1 : 2nRX ],
T2 : Yn → [1 : 2nRY ],

strategy functions:

hd : [1 : 2nRX ] → An for case A,

he : X n → An for case B, (2)

and a decoding function:

g : [1 : 2nRX ] × [1 : 2nRY ] → X̂ n × Ŷn .

Actions taken are subject to a cost constraint �, that is,

E

[
1

n

n∑

i=1

�(Ai )

]
≤ �. (3)

The probability of error for a code (2nRX , 2nRY , n) is defined
as P(n)

e = Pr((Xn, Y n) �= g(T1, T2)). For a given cost
constraint �, a rate pair (RX , RY ) is said to be achievable
if there exists a sequence of codes (2nRX , 2nRY , n) such that
P(n)

e → 0 as n → ∞ and the cost constraint, (3), is satisfied.
The optimal rate region is the convex closure of the set of
achievable rate pairs. Let us denote the optimal rate regions
as RA and RB for case A and case B, respectively.

A. Network Model

A network is represented as a directed, acyclic graph
G = (V, E), where V is the set of network nodes and
E is the set of links, such that information can be sent
noiselessly from node i to node j if (i, j) ∈ E . Each edge
l ∈ E is associated with a nonnegative real number cl , which
represents its capacity in bits per unit time. We also denote
the origin node of the link l as σ(l) and the destination of a
link l as τ (l).

We specify a network of correlated sources with actions
(V, E, s1, s2,D) as follows. The source sequence Xn is such
that Xi ∈ X for i ∈ [1, n] is i.i.d. with a pmf PX . Based
on its source observation Xn , node s1 ∈ V selects an action
sequence An ∈ An . The action sequence affects the generation
of the other source sequence Y n as specified in (1). The source
sequence Y n is available at node s2 ∈ V \ {s1}. The source
sequences (Xn, Y n) are demanded at a set of terminal nodes
denoted as D ⊆ V \ {s1, s2}. We assume that the source nodes
s1, s2 have no incoming links and that each node t ∈ D has
no outgoing links.

For any vector of rates (Rl)l∈E , a
((

2nRl
)

l∈E , n
)

source
code consists of a strategy function:

h : X n → An,

encoding functions:

gl : X n → [1 : 2nRl ]∀l ∈ E, σ (l) = s1,

gl : Yn → [1 : 2nRl ]∀l ∈ E, σ (l) = s2,

gl : ∏
l′:τ (l′)=σ(l)[1 : 2nRl′ ]

→ [1 : 2nRl ]∀l ∈ E, σ (l) �∈ {s1, s2},

and decoding functions, for each t ∈ D:

φt : ∏
l:τ (l)=t {1, . . . , 2nRl } → X̂ n × Ŷn .

We are interested in the set of possible values (cl)l∈E , such
that for any ε > 0 there exists a sufficiently large n
and a

((
2nRl

)
l∈E , n

)
code with Rl ≤ cl for all l ∈ E ,

such that maxt∈D Pr((X̂n
t , Ŷ n

t ) �= (Xn, Y n)) ≥ 1 − ε
and E

[ 1
n

∑n
i=1 �(Ai )

] ≤ �. We call the closure of
this set the set of the achievable rates, which we denote
by RN .

Given any set A ⊂ V and a node t ∈ V \ A, a cut VA;t is a
subset of vertices that includes A but is disjoint from t , that
is, A ⊆ VA;t and VA;t ∩ t = ∅. Given a cut VA;t , the capacity
of a cut C(VA;t ) is the sum over all capacities of edges l ∈ E
such that σ(l) ∈ VA;t and τ (l) �∈ VA;t ; that is,

C(VA;t ) =
∑

l∈E :σ(l)∈VA;t ,τ (l) �∈VA;t

cl .

For a given set A and a node t , let V∗
A;t be the minimum cut,

which is the cut minimizes the capacity of a cut among all cuts
VA;t . Finally, for given non-intersecting sets A,D we define
C(V∗

A;D) = mint∈D C(V∗
A;t ).
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III. MAIN RESULTS

This section concerns with the main results of this paper.
Specifically, the next two theorems state the optimal rate
regions of case A and case B.

Theorem 1: The optimal rate region RA for case A
(See Fig. 1), i.e. correlated sources with actions taken at the
decoder, is the closure of the set of triplets (RX , RY , �) such
that

RX ≥ H (X |Y, A) + I (X; A), (4a)

RY ≥ H (Y |X, A), (4b)

RX + RY ≥ H (X, Y |A) + I (X; A), (4c)

where the joint distribution of (X, A, Y ) is of the form:

PX,A,Y = PX PA|X PY |A,X , (5)

under which E [�(A)] ≤ �.
Theorem 2: The optimal rate region RB for case B (See

Fig. 2), i.e. correlated sources with actions taken at the
encoder, is the closure of the set of triplets (RX , RY , �) such
that

RX ≥ H (X |Y, A) + I (X; A) − I (Y ; A), (6a)

RY ≥ H (Y |X, A), (6b)

RX + RY ≥ H (X, Y |A) + I (X; A), (6c)

where the joint distribution of (X, A, Y ) is of the form (5),
under which E [�(A)] ≤ �.

The proofs of Theorem 1 and Theorem 2 appear in
Section V.

Remark 1: Given a fixed distribution of the form (5), the
regions satisfy RA ⊆ RB ; specifically, when minimizing
RY , the regions share a common corner point which be
represented as (RX , RY ) = (H (X), H (Y |X, A)). For the other
corner point, one can note that RX has a looser constraint
in RB , while the sum rate is equal in both regions. The
difference between the rates in RX is by a non-negative factor
of I (Y ; A) and can be justified by the operative definitions
in (2).

Remark 2: In the special case where RY is unlimited, both
regions RA and RB reduce to those investigated in [7].
In this case, (4b),(4c) and (6b),(6c) are redundant constraints
and, thus, the only constraint is on the rate RX . From
here it follows that Theorem 1 coincides with [7, Th. 1]
source coding with SI where actions are taken at the decoder
with lossless reconstruction, and Theorem 2 coincides with
[7, Th. 5] source coding with SI where actions are taken at the
encoder.

Another special case is when considering deterministic
actions, that is, A = a; let us write the original optimal rate
region of SW as RSW (PX , PY |X ), with the explicit dependence
on PX and PY |X . For this setting, both RA and RB reduce to
RSW (PX , PY |X,A=a).

We proceed to the next theorem which concerns with our
main result on the general networks scenario.

Theorem 3: Given a correlated sources with action network
(V, E, s1, s2,D, �) (See Fig. 3), the set of achievable rates RN

is such that

C(V∗
s1;D) ≥ I (X; A) − I (Y ; A) + H (X |Y, A), (7a)

C(V∗
s2;D) ≥ H (Y |X, A), (7b)

C(V∗
s1,s2;D) ≥ I (X; A) + H (X, Y |A), (7c)

where the joint distribution of (X, A, Y ) is of the form (5),
under which E [�(A)] ≤ �.

The network investigated here is an extension of case B,
and thus there are solid similarities between both results.
Specifically, the right hand side of (7) coincides with the
information measurements in Theorem 2. Moreover, the region
of Theorem 3 is reduced to the optimal rate region given in 2
by taking the set of nodes as V = {s1, s2, t}, and the set of
edges as E = {(s1, t), (s2, t)}.

IV. EXAMPLES

In this section, we study two binary examples and calculate
their corresponding optimal rate regions RA , RB . We also an
additional special scenario where actions are taken before the
first source Xn is known, and thus actions are independent of
this source and play the role of time-sharing of the possible
actions. This special scenario may seem a degenerate setup, but
can lead to some insights when considering an implementation
of such a system with actions. The first example illustrates a
scenario where actions taken at different nodes of the system
cannot affect the set of achievable rates, while the second
example demonstrated how taking actions at different nodes of
the system improve significantly the optimal rate region under
a cost regime.

Example 1: This binary example is a continuation of the
first motivating scenario in Section I: two sensors’ measure-
ments, X and Y , are known at different nodes of the system
and are required at a terminal node. The measurement X
is a coarse measurement which is binary and distributed
uniformly, while the measurement Y corresponds to fine
or coarse measurement that depends on the taken actions.
A low-cost actions correspond to a fine measurement within
the measured range, and high-cost actions correspond to
a coarse measurement identical to the X measurement.
This cost implies that the number of fine measurements
needs to be above some threshold. Our goal is to char-
acterize the transmission rates that are required to receive
both measurements at the decoder, subject to the given
constraint.

The example is illustrated in Fig. 4; all alphabets are binary,
i.e. X = Y = A = {0, 1}, and X ∼ Bern(0.5). The source
Y is an output of a clean channel if A = 0, and the output
of a noisy-channel with crossover probability 0.5 if A = 1.
Actions can be taken at the decoder (switch 2 is closed), at the
encoder (switch 1 is closed) or in the special case of actions
taken before the source X is known (switch 1 and switch 2
are open). We consider a cost function �(A) = A that implies
the constraint P(A = 1) ≤ �/

Case A - actions are taken at the decoder; the setup is
depicted in Fig. 4, with switch 2 closed. A general condi-
tional distribution connecting X and A is considered, with
PA|X (1|0) = α and PA|X (0|1) = β. The optimal rate region,
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Fig. 4. The setup for example 1. Actions can be performed by the decoder
(switch 2 is closed), by the encoder (switch 1 is closed) or before X is known
(switch 1 and switch 2 are open). The switch in the dashed box corresponds
to actions’ performance.

RA , is as follows:

RX ≥ 1 − 0.5(α + β̄)Hb

(
α

α + β̄

)
,

RY ≥ 0.5(ᾱ + β),

RX + RY ≥ 1 + 0.5(ᾱ + β), (8)

for some α, β ∈ [0, 1] such that 0.5(α + β̄) ≤ �.
Case B - actions are taken at the encoder; the setup is

depicted in Fig. 4, with switch 1 closed. Calculating RB with
the same pmf as in the previous case yields:

RX ≥ 1 − Hb(0.5α + 0.25[β + ᾱ]) + 0.5(ᾱ + β),

RY ≥ 0.5(ᾱ + β),

RX + RY ≥ 1 + 0.5(ᾱ + β), (9)

for some α, β ∈ [0, 1] such that 0.5(α + β̄) ≤ �.
Case C - Actions are taken before the source Xn is known -

for this case, actions contain no information of the source Xn

and play the role of a time-sharing random variable that is
available to all nodes in the system. Definitions of the proba-
bility of error, achievable rates and the optimal rate region, that
is denoted by RA⊥X , are defined in a straightforward manner
as in the previous cases. For this scenario, it can be shown
that the optimal rate region RA⊥X is the set of (RX , RY , �)
that satisfy:

RX ≥ H (X |Y, A),

RY ≥ H (Y |X, A),

RX + RY ≥ H (X, Y |A),

for some joint distribution PX,A,Y = PX PA PY |A,X , under
which E [�(A)] ≤ �.

The setup is depicted in Fig. 4 where both switches are
open; we assume that X ∼ Bern(ᾱ) and the optimal rate
region, RA⊥X , is as follows:

RX ≥ ᾱ,

RY ≥ ᾱ,

RX + RY ≥ 1 + ᾱ, (10)

for some α ≤ �.

Fig. 5. The setup for example 2. Actions can be taken at the decoder (switch 2
is closed ), at the encoder (switch 1 is closed) or before X is known (switch 1
and switch 2 are open). The switch in the dashed box corresponds to actions’
performance.

Remarkably, the unions over the input distribution in the
three resulted regions coincide for any value of �. The input
distribution that maximizes the regions is as follows: substitute
α = � and β̄ = � (which satisfies the cost constraint on its
boundary), and it then follows that optimal rate regions given
in (8)-(9) and (10) are:

RX ≥ 1 − �,

RY ≥ 1 − �,

RX + RY ≥ 2 − �,

where � is the cost constraint.
This equivalence of the optimal rate regions can happen in

systems for which greedy policy is optimal. A greedy policy
is associated with a system for which different observations of
X lead to the same actions strategy that minimize the transmis-
sion rates. For instance, in example 1, the greedy policy is to
maximize the appearances of A = 1 that yield more correlation
between X and Y , and thus a greater achievable region. Note
that this policy has no dependence on the source X , and the
only constraint is given by the cost �.

Example 2: This example is based on the second scenario
described in the introduction and depicted in Fig. 5. Let us
specify the technical details of this scenario; the operation of
the first unit is modeled as the source X that is distributed
according to Bern(0.5). We refer to X = 1 as the backup
operation of the first unit, and X = 0 to no backup operation.
The other backup unit is modeled as the other source Y , which
is governed by actions. The scenario under consideration is
where actions determine the operation that will be repeated in
the second unit with a probability of 1. The above is modeled
as S and Z channels; the S channel assures that the backup
operation will be repeated in the second unit, while Z-channel
assures that no backup operation will be repeated in the second
unit. This choice also verifies that for a certain percentage
of the time both operators are different, independent of the
actions taken.

The cost of actions is taken as �(A) = A, due to power
consumptions; specifically, we allocate higher cost for repeat-
ing the backup operation than for repeating the no backup
operation. Also here, actions can be taken at the decoder



SABAG et al.: LOSSLESS CODING OF CORRELATED SOURCES WITH ACTIONS 1243

(switch 2 is closed), at the encoder (switch 1 is closed) or
before the source X is known (switch 1 and switch 2 are
open).

Case A - actions are taken at the decoder; the setup is
depicted in Fig. 5 for the case that switch 2 is closed. A general
conditional distribution connecting X and A is considered,
with PA|X (1|0) = α and PA|X (0|1) = β that imply the
constraint 0.5(α + β̄) ≤ �. Straightforward calculation of (4),
gives that the optimal rate region, RA , is:

RX ≥ 1 − 0.5

[
(α + β̄)Hb

(
β̄

α + β̄

)

− (β + ᾱ)Hb

(
ᾱ

β + ᾱ

)]

+ 0.5

[
(ᾱ + βδ)Hb

(
ᾱ

ᾱ + βδ

)

+ (β̄ + αδ)Hb

(
β̄

β̄ + αδ

)]

RY ≥ 0.5(α + β)Hb(δ)

RX + RY ≥ 1 + 0.5(α + β)Hb(δ),

for some α, β ∈ [0, 1] such that 0.5(α + β̄) ≤ �.
Case B - actions are taken at the encoder; the setup is

depicted in Fig. 5 for the case that switch 1 is closed. A
conditional distribution is assumed as in case A. The optimal
rate region ,RB , for this case is as follows:

RX ≥ 1 + 0.5(α + β)Hb(δ) − Hb(0.5[1 + αδ − βδ]),
RY ≥ 0.5(α + β)Hb(δ),

RX + RY ≥ 1 + 0.5(α + β)Hb(δ),

for some α, β ∈ [0, 1] such that 0.5(α + β̄) ≤ �.
Note, the optimal rate region RB is minimized by taking

A = X for the case of � ≥ 0.5.
Case C - actions are taken before the source Xn is known;

the setup is depicted in Fig. 5 where both switches are open.
The optimal rate region, RA⊥X , is:

RX ≥ 0.5(1 + δ)Hb

(
1

1 + δ

)
,

RY ≥ 0.5Hb(δ),

RX + RY ≥ 1 + 0.5Hb(δ).

Note that the region is independent of α and no union is needed
here. This fact implies that RA⊥X is also independent of the
cost � and only depends on the value of δ.

To gain some intuition regarding the optimal rate regions,
we draw the results for � = 0.3 and δ = 0.5 in Fig. 6. Let
us examine the curved dashed blue line, which corresponds
to case A; its corner point coincides with the black line
(squared-marker) and tends to the red line (triangled-marker)
for decreasing RX . The corner point that coincides with the
black line is the common corner point that is discussed in
Remark 1. As long as RX is decreased, this implies that
PA|X is constrained to have less correlation between A and X .
Although it seems that the blue line tends to the red line, it is
notable that the blue plot achieves better performance in RX

than the red plot, that is, independent A and X is not optimal

Fig. 6. The optimal rate regions for the three cases of Example 2.

also when minimizing RX . Clearly, case A and case B have
greater optimal region than the region of case C, thus time-
sharing is not optimal in general when considering an action-
dependent system.

V. PROOFS OF CASE A AND CASE B

In this section we present the proof of Theorem 1 and the
achievability of Theorem 2. Since the network model that is
studied in Theorem 3 is a generalized version of case B, we
omit the converse of Theorem 2, and it follows directly from
the cut-set bounds in Section VI. Although the achievability
of case B also follows from the network case, we provide an
alternative achievability proof, which is less complicated than
the direct method of Theorem 3.

A. Proof of Theorem 1

In this section, we provide an optimal code construction
for case A and then provide a converse that completes the
proof of Theorem 1. The coding scheme combines both the
idea of actions and the SW machinery: at first, we will use
random coding arguments for the actions’ generation and
explicitly transmit the sequence that is typical with xn to
the decoder. The first step has also been done in [7] for the
case of source coding with SI where actions are taken at the
decoder. However, the second stage in our proof is different
from [7]; we use the SW machinery of random binning in the
decentralized encoders to compress both sources. Later, at the
decoding stage, we will exploit the actions’ codeword that is
available at the decoder as SI, when looking for jointly typical
codewords in the pair of assigned bins.

1) Sketch of Achievability: At the first stage, the identity
of the action sequence is transmitted from encoder 1 to the
decoder as follows: generate a codebook of actions containing
2nI (X;A) independent codewords, where each codeword is
generated according to the marginal distribution PA. Encoder 1
looks in the codebook for a codeword which is jointly typical
with the source observation xn , and transmits this codeword
to the decoder using a rate of I (X; A). The existence of a
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typical actions’ codeword with the source observation follows
directly from the covering lemma [19, Ch. 3].

We proceed and note that the optimal rate region in (4),
RA , can be written as:

RX − I (X; A) ≥ H (X |Y, A),

RY ≥ H (Y |X, A),

[RX − I (X; A)] + RY ≥ H (X, Y |A). (11)

The right hand side of (11) reveals the SW nature of this
region; the information measures correspond to a SW mech-
anism, but with the actions’ sequence An available to the
decoder. Before proceeding to the last step of the proof,
note that the triplet (An, Xn, Y n) is jointly typical with high
probability. Specifically, the source Y n is an output of a
memoryless channel that is conditioned on the pair (Xn, An)
which is also jointly typical with high probability.

Finally, the proof is completed by implementing a SW
coding scheme with the actions treated as SI available at the
decoder. A straightforward calculation gives that the right hand
side of (11) is achieved.

2) Converse: For a sequence (2nRX , 2nRY , n) of codes with
corresponding achievable rates, consider the rate that is used
by encoder 1:

n RX ≥ H (T1)
(a)= H (T1, An) + H (Xn|Y n, T1) − H (Xn|Y n, T1)
(b)≥ H (An) + H (T1|An) + H (Xn|Y n, T1) − nεn
(c)≥ H (An) + H (T1|An, Y n) + H (Xn|Y n, T1) − nεn
(d)= H (An) + H (Xn, T1|An, Y n) − nεn
(e)= H (An) + H (Xn|An, Y n) − nεn
( f )= H (An) − H (An|Xn) + H (Xn|An, Y n) − nεn
(g)= H (Xn) − H (Y n|An) + H (Y n|An, Xn) − nεn

(h)≥
n∑

i=1

[H (Xi) − H (Yi |Ai) + H (Yi |Ai , Xi )] − nεn

(i)=
n∑

i=1

[I (Xi ; Ai) + H (Xi |Ai , Yi )] − nεn,

where:

(a) follows from the fact that An is a deterministic function
of the index T1;

(b) follows from Fano’s inequality and properties of joint
entropy;

(c) follows from the fact that conditioning reduces entropy;
(d) follows from the fact that An is a deterministic function

of the index T1;
(e) follows from the fact that T1 is a deterministic function

of Xn ;
(f) follows from the fact that An is a deterministic function

of T1 and, therefore, also a deterministic function of Xn ;
(g) follows from the properties of mutual information;
(h) follows from the facts that Xn is i.i.d., conditioning

reduces entropy and the memoryless property (1);
(i) follows from the properties of mutual information.

In the derivation above, steps ( f ) − ( j) are similar to those
taken in [7, eq. (18)] and presented here for completeness.

For the second rate that is used by encoder 2, consider

n RY ≥ H (T2)
(a)≥ H (T2, Y n |Xn) − H (Y n|T2, Xn)
(b)≥ H (T2, Y n |Xn) − nεn
(c)= H (Y n|Xn) − nεn
(d)= H (Y n|Xn, An) − nεn

(e)=
n∑

i=1

[H (Yi |Ai , Xi )] − nεn,

where:

(a) follows from the fact that conditioning reduces entropy;
(b) follows from Fano’s inequality;
(c) follows from the fact that T2 is a deterministic functions

of Y n ;
(d) follows from the fact that An is a deterministic function

of T1 and, therefore, also a deterministic function of Xn ;
(e) follows from the memoryless property (1).

The last lower bound is for the achievable sum-rate of the
two encoders:

n(RX + RY ) ≥ H (T1, T2)

= H (T1, T2, Xn , Y n) − H (Xn, Y n|T1, T2)
(a)≥ H (Xn, Y n) + H (T1, T2|Xn, Y n) − nεn
(b)= H (Xn, Y n) − nεn
(c)= H (Xn) + H (Y n|Xn, An) − nεn

(d)=
n∑

i=1

[H (Xi) + H (Yi |Xi , Ai )] − nεn

=
n∑

i=1

[I (Xi ; Ai) + H (Xi, Yi |Ai )] − nεn

where:

(a) follows from Fano’s inequality and the properties of joint
entropy;

(b) follows from the fact that T1 and T2 are deterministic
functions of Xn and Y n , respectively;

(c) follows from the fact that An is a deterministic function
of T1 and, therefore, also a deterministic function of Xn ;

(d) follows from the fact that Xn is memoryless and the
memoryless property (1).

Derivation of the single letter terms is by using a standard
time-sharing technique. Thus, we have shown that the pair of
achievable rates (RX , RY ) satisfy the next set of inequalities:

RX ≥ I (X; A) + H (X |A, Y ) − εn,

RY ≥ H (Y |A, X) − εn,

RX + Ry ≥ I (X; A) + H (X, Y |A) − εn . (12)

The proof is completed by taking n → ∞ in (12), which
implies εn → 0 since (RX , RY ) are achievable.
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Fig. 7. The optimal rate region, RB , for case B.

B. Achievability of Theorem 2

For the achievability proof that is presented in this section
we use time sharing arguments; specifically, we prove that
the corner points of RB are achievable and conclude that the
convex region is also achievable. The corner points of RB are
illustrated in Fig. 7 for a fixed joint distribution, and can be
written as:

(RX , RY ) = (I (X; A) − I (Y ; A) + H (X |Y, A), H (Y )) (13)

(RX , RY ) = (H (X), H (Y |X, A)) . (14)

The corner point in (13) can be achieved as follows: actions’
generation is performed according to the method proposed in
[7, Sec. III]. Note that actions are taken at the encoder and
no transmission rates are required for this step. The source
sequence Y n is then generated and transmitted in a lossless
manner at a rate of H (Y ) to the decoder. It then follows that
the current problem is reduced to that of [7, Sec. III]-source
coding with SI where actions are taken at the encoder. The
proof for the rate RX = I (X; A) − I (Y ; A) + H (X |Y, A) is
omitted here, and can be found in [7, Sec. III].

The corner point in (14) is, indeed, the common corner point
for case A and case B as mentioned in Section III. The rate
RX in (14) can be written also as H (X); thus, this rate is used
to transmit the source Xn in a lossless manner to the decoder.
Having received the source Xn , the decoder obtains An ,
which is a deterministic function of Xn . Later, a trivial
source coding scheme for the source Y n is used at a rate of
H (Y |X, A), where (Xn, An) are considered as SI available to
the decoder.

VI. PROOF OF THEOREM 3
In this section, the converse for Theorem 3 is given in

subsection VI-A and the code construction, encoding and
the decoding procedures are presented in subsection VI-B.
In subsection VI-C, Lemma 1 states an upper bound on the
probability of error that two different inputs to a randomized
network yield the same output, followed by a multicast exam-
ple and the proof of the lemma. Finally, the analysis of the
probability of error will be given in subsection VI-D.

A. Generalized Cut-Set Bounds (Converse)

In this subsection, we derive an outer bound on the set of
achievable rates for our model. The outer bound is indeed
a generalization of the known cut-set bound, this method of
generalized cut-set bounds was adopted also in [20].

For the converse of Theorem 3, given an achievable((
2nRl

)
l∈E , n

)
source code we need to show that there exists

a joint distribution, PX,A,Y = PX PA|X PY |X,A, such that the
inequalities in Theorem 3 hold.

For any set of messages denoted by M1, across a cut Vs1;t ,
we have

nC(Vs1;t ) ≥ H (M1)

= H (M1) + H (Xn|Y n,M1) − H (Xn|Y n,M1)

(a)≥ H (M1) + H (Xn|Y n,M1) − nεn

(b)≥ I (M1; Xn, Y n) + H (Xn|Y n,M1) − nεn

= H (Xn, Y n) − H (Y n|M1) − nεn

(c)≥ H (Xn) + H (Y n|Xn, An) − H (Y n) − nεn

(d)≥
n∑

i=1

[H (Xi) − H (Yi) + H (Yi |Ai , Xi )] − nεn

=
n∑

i=1

[I (Xi ; Ai) + H (Yi, Xi |Ai ) − H (Yi)] − nεn

=
n∑

i=1

[I (Xi ; Ai)− I (Yi ; Ai )+H (Xi |Ai , Yi )]−nεn,

where:

(a) follows from Fano’s inequality;
(b) follows from the fact that M1 is a deterministic function

of Xn , Y n;
(c) follows from the fact that An is a deterministic function

of Xn ;
(d) follows from the Xn is memoryless, conditioning reduces

entropy and the memoryless property (1).

For the second inequality in (7), we have

nC(Vs2;t ) ≥ H (M2)

≥ H (M2, Y n |Xn) − H (Y n|Xn,M2)
(a)≥ H (M2, Y n |Xn) − nεn
(b)= H (Y n|Xn, An) + H (M2|Xn, Y n) − nεn
(c)= H (Y n|Xn, An) − nεn

=
n∑

i=1

H (Yi |Ai , Xi ) − nεn ,

where:

(a) follows from Fano’s inequality;
(b) follows from the fact that An is a deterministic function

of Xn ;
(c) follows from the fact that M2 is a deterministic function

of Xn , Y n .
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For the sum-rate, we have

nC(Vs1,s2;t ) ≥ H (M3)

= H (Xn, Y n,M3) − H (Xn, Y n |M3)
(a)≥ H (Xn, Y n,M3) − nεn
(b)= H (Xn, Y n) − nεn
(c)= H (Xn) + H (Y n|Xn, An) − nεn

(d)=
n∑

i=1

[H (Xi) + H (Yi |Xi , Ai )] − nεn

=
n∑

i=1

[I (Xi ; Ai ) + H (Yi, Xi |Ai )] − nεn,

where:
(a) follows from Fano’s inequality;
(b) follows from the fact that M3 is a deterministic function

of Xn, Y n;
(c) follows from the fact that An is a deterministic function

of Xn ;
(d) follows from the fact the Xn is memoryless and the

memoryless property (1).
Let us summarize the lower bounds we have characterized:

C(Vs1;t ) ≥ 1
n∑

i=1

1

n
[I (Xi ; Ai ) − I (Yi ; Ai)

+ H (Xi |Ai , Yi )] − εn,

C(Vs2;t ) ≥
n∑

i=1

1

n
H (Yi |Ai , Xi ) − εn,

C(Vs1,s2;t ) ≥
n∑

i=1

1

n
[I (Xi ; Ai) + H (Yi , Xi |Ai)] − εn,

(15)

for some cuts Vs1;t ,Vs2;t ,Vs1,s2;t .
To complete the proof, we minimize the left hand side

of (15) by taking the cuts to be C(V∗
s1;t ), C(V∗

s2;t ), and
C(V∗

s1,s2;t ), respectively. Derivation of the single-letter char-
acterization in (15) is done by the common time-sharing
technique as in [21].

B. Direct

As the direct proof involves linear network coding over a
finite filed, throughout this proof, without loss of generality,
we assume that each edge has unit capacity. Namely, each edge
can transmit one element in the field F2 per unit time.1 This
model is common in the linear network coding literature. For
instance, see [2] or [22]. It is justified by allowing parallel
edges to achieve any integer capacity and, further, by nor-
malizing over multiple transmissions to achieve any rational
capacity. Thus, we will use this notation throughout the direct.
The converse proof, however, holds for the more general
definition of network coding, as was given in subsection VI-A.

The construction of the code is based on a random codebook
generation of the actions codewords that is followed by

1The finite field F2 is chosen to ease the representation of the code. The
techniques herein are nor restricted to finite fields with characteristic 2.

transmission of the network inputs using RLNC in a finite
field. The rate of the actions’ codebook generation will be
depend on the sign of the expression I (X; A) − I (Y ; A), and
throughout the proof, we differentiate between these two cases.
In each case, it will be shown how actions can be exploited
such that the optimal region is achieved. Furthermore, the
source sequences Xn and Y n are binned randomly, and these
bins together with the chosen action codewords will be the
inputs to the network. Recall that we have assumed that each
link in the network has a unit capacity (i.e. transmit one bit
in each time instance) and, therefore, inputs to the network
for n channel uses are represented as vectors consisting of
elements from F2n . The transmission is based on RLNC
in F2n , using the algebraic approach formulation introduced by
Koetter and Medard [22].

1) The Case I (X; A)− I (Y ; A) ≥ 0: Fix a joint distribution
of PX,A,Y = PX PA|X PY |A,X , where source distributions PX

and PY |A,X are given.
Code construction:
• The Xn sequences are randomly binned into 2nr1 bins,

where r1 � H (X) + ε, for some ε > 0. Each bin can be
represented as nr1 bits, or alternatively as a vector of �r1�
elements from the finite field F2n . The bin vector of Xn

will be denoted as X n , consisting of �r1� elements. The
Y n sequences are randomly binned into 2nr2 bins, where
r2 � H (Y )+ε. Again, the bin vector of the sequence Y n

will be denoted by Y n , consisting of �r2� elements from
F2n . The bin vectors X n and Y n will be part of the input
to the network.

• A codebook C of actions codewords is generated, con-
sisting of 2nrA independent codewords, An(i), i ∈
{1, 2, . . . , 2nrA }, where each codeword is distributed i.i.d.
according to ∼ ∏n

j=1 PA(a j ). Each codeword An is
represented by a vector of elements from F2n , denoted
by An and consisting of �rA� elements.

• The inputs to the network will be the source bins X n , Y n ,
and actions codewords An , each consisting of elements
in F2n . Each element in the input vectors X n , Y n , and An

is denoted by Ui , where i ∈ {1, . . . , �r1� + �r2� + �rA�}.
Let σ(Ui ) be equal to s1 if Ui is an element in the vector
X n or An , and σ(Ui ) = s2 if Ui is an element in the
vector Y n .

The information process Vj transmitted on a link j ∈ E
is formed as a linear combination, in F2n , of link j ’s inputs,
i.e. source elements, Ui , for which σ(Ui ) = σ( j) and input
processes Vl for which τ (l) = σ( j). This can be represented
by the equation

Vj =
∑

i:σ(Ui )=σ( j )

bi, j Ui +
∑

l:τ (l)=σ( j )

fl, j Vl .

The coefficients {bi, j , fl, j } are generated uniformly from the
finite field F2n and collected into matrices B = {bi, j } and
F = { fl, j }; note the dimensions |B| = (�r1� + �r2� + �rA�) ×
|E |, and |F| = |E | × |E |. For acyclic graphs, we can assume
that there exists an ancestral indexing of the links in E . It then
follows that the matrix F is upper triangular with zeros on the
diagonal and there exists the inverse of (I − F), denoted by
G � (I − F)−1. Let Gv denote the sub-matrix consisting of
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only the columns of G corresponding to the input links of
node v. Now, we can write the complete mapping from the
input vector of the network, e.g. U = [Xn, An, Y n], to the
input processes of some terminal node t as:

Zt = [Xn, An, Y n]BGt ,

where Zt is a vector consisting of the processes Vj satisfying
d( j) = {t}.

Encoding: Given the source realization xn , node s1 looks in
the codebook for an index i such that An(i) is jointly typical
with xn; if there is none it outputs i = 1. If there is more than
one index, i is set to the smallest among them. The source Y n

is then generated and available at node s2. The input to the
network will then be the vector [xn, an, yn], where xn, yn are
the bins’ sources, and an is the chosen actions codeword.

Decoding: Having received the vector Zt , each node t ∈
D looks for a unique triplet (Xn, An, Y n) ∈ T (n)

ε (X, A, Y )
satisfying [Xn, An, Y n]BGt = Zt .

2) The Case I (X; A)− I (Y ; A) ≤ 0: Fix a joint distribution
of PX,A,Y = PX PA|X PY |A,X , where the source distributions
PX and PY |A,X are given.

Code construction:

• Generate a codebook C, consisting of 2n(I (Y ;A)−ε) inde-
pendent codewords, An(i), i ∈ {1, . . . , 2n(I (Y ;A)−ε)},
where each element is i.i.d. ∼ ∏n

j=1 PA(a j ), for some
ε > 0. Randomly bin the codewords in C into 2n� bins,
where � = (I (Y ; A) − I (X; A) − 2ε), such that in each
bin there are 2n(I (X;A)+ε) codewords. For each An ∈ C,
the bin that contains An will be denoted as BAn . Each bin
can be represented by a message of n� bits, which is the
rate that is reduced from the source Xn . Let An denote
the representation of each codeword by �I (Y ; A) − ε�
elements from F2n .

• The Xn sequences are randomly binned into 2nr1 bins,
where r1 � H (X |Y, A) + ε. The notation BXn stands
for the first n� bits of the bin index where Xn falls.
Additionally, each bin index is denoted by X n( j), j ∈
{1, . . . , 2nr1}, consisting of �r1� elements from the finite
field F2n .

• The Y n sequences are randomly binned into 2nr2 bins,
where r2 � H (Y )+ε. Each bin is represented by a vector
consisting of �r2� elements from F2n , and denoted by
Y n(k) k ∈ {1, . . . , 2nr2 }.

• The process of network coefficients generation is the
same as for the case I (X; A)−I (Y ; A) ≥ 0, and therefore
omitted here.

Encoding: Given the source realization xn , node s1 looks
in the actions’ bin satisfying BAn = Bxn for a codeword
An which is jointly typical with xn . The source yn is then
generated and available at node s2. The input to the network
will then be the vector [xn, an, yn] corresponding to the
bins where the source sequences fall and the chosen actions
codeword.

Decoding: Having received the vector Zt , each node t ∈
D looks for a unique triplet (Xn, An, Y n) ∈ T (n)

ε (X, A, Y )
satisfying [Xn, An, Y n]BGt = Zt and BAn = IXn .

C. An Upper Bound in Randomized Networks

Following the result in [2, Appendix I], the next lemma
provides an upper bound on the probability of the event that
two different inputs to a randomized linear network yield the
same output at a terminal node t . Due to the fact that the
network is linear, this event is equivalent to the event that
the difference between two inputs yields the zero processes at
the terminal node. The next lemma will be at the assist of our
direct proof. Moreover, as we will see in Example. 3, it has
implications beyond the scoop of our proof as well.

Let G = (V, E) be a directed, acyclic graph where each link
has a unit-capacity. The matrix BGt represents the complete
mapping of the network from inputs to some node t as
presented in the code construction of subsection VI-B. Now,
consider a set of sources with no incoming links, denoted by
S ⊆ V , such that S = {1, . . . , k}. Each node i ∈ S consists of
a vector, ui , which comprises elements from F2n . For any two
different inputs to the network, denoted by u = [u1u2 . . . uk]
and v = [v1v2 . . . vk], let W be a subset of S, such that if
ui �= v i then i ∈ W .

Lemma 1: For any pair of different inputs u and v , the
probability that these inputs induce the same output in node t
is bounded by:

Pr
([u − v]BGt = 0

) ≤
(

L

2n

)C(V∗
W;t )

,

where L denotes the maximum source-receiver path length,
and C(V∗

W;t) is the minimum cut-set between W and t.
Note that the upper bound is independent of the number of

elements in the vector ui ,∀i . This remarkable fact allows us
to think of An and Xn as the same input in our network; thus,
for the following two useful probabilities:

Pr
([x̃n − xn, ãn − an, 0]BGt = 0|x̃n �= xn, ãn �= an

)

Pr
([x̃ n − xn, 0, 0]BGt = 0|x̃n �= xn

)
,

we will have the same upper bound,
(

L1
2n

)C(V∗
s1;t )

, with L1

stands for the maximum length of a path between s1 and t .
We now show how the lemma above can serve as an easy

and elegant proof to the capacity of multicast networks: a
sender wishes to transmit a message to a set of terminal nodes
through a directed, acyclic network. The sender transmits a
message from the set M = {1, . . . , 2nR}, and each receiver
t ∈ D is required to decode the correct message in a lossless
manner. We want to characterize the maximal rate R that can
be used for a reliable communication in a given network.

Example 3 (Multicast Network): Consider a directed,
acyclic network, where sender denoted as node 1 is required
to transmit a message from M = {1, . . . , 2nR} to a set of
terminal nodes denoted as D. The sender can choose any
message, m ∈ M, and each receiver t ∈ D is required to
decode the correct message in a lossless manner. We provide
here a simple n block-length coding scheme follows by an
analysis of the probability of error.

To encode the message, we rely on the scalar algebraic
approach we have shown earlier in the code construction of the
proof for Theorem 3. The input to the network is m, where m
is a vector representing m by elements from F2n . Each terminal
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node, t ∈ D, having received zt looks for m ∈ M satisfying
mBGt = zt .

Now, assume without loss of generality that the message m
was sent. An error occurs only if there exists m′ �= m
satisfying m′BGt = zt for some t ∈ D.

Upper bounding the probability of error for some receiver
t ∈ D yields:

Pr(error) = Pr(∃m̃ �= m : [m̃ − m]BGt = 0)

=
∑

m̃∈M
Pr([m̃ − m]BGt = 0)

≤ 2nR
(

L

2n

)C(V∗
1;t )

= LC(V∗
1;t )2n(R−C(V∗

1;t )). (16)

Note that if R ≤ C(V∗
1;t), the term (16) tends to zero for

sufficiently large n. Our requirement is to decode the message
correctly at all the receivers; thus, using the union-bound
we achieve that the overall probability tends to zero for
large n if,

R < min
t∈D

C(V∗
1;t),

which is the known multicast result.
Proof of Lemma 1: Let G1 be a subgraph of G consisting

of all links downstream of W , where a link l is considered
downstream if σ(l) ∈ W , or if there is a directed path from
some source s ∈ W to σ(l). Since information sources can
differ only in source nodes satisfying i ∈ W , this fact induces
that only links in G1 will affect the bound on probability.

Note that in a random linear network code with block
length n, any link l which has at least one nonzero input
transmits the zero process with probability 2−n . This is the
same as the probability that a pair of distinct values for the
inputs of l are mapped to the same output value on l.

For a given pair of distinct input values, let El be the event
where the corresponding inputs to link l are distinct, but the
corresponding values on l are the same. Let E(G1) be the event
that El occurs for some link l on every source-terminal path
in graph G1. Note, the probability of the event E(G1) is equal
to the probability that two inputs induce the same output at
the terminal node, i.e. Pr([u − v]BGt = 0).

We proceed and look at the set of source-terminal paths in
the graph G1. By Menger’s Theorem [23], there exist C(V∗

W;t)
disjoint paths, since each link in the network has unit capacity.
We denote each disjoint path as PG1i with its corresponding
length Li , where i ∈ {1, . . . , C(V∗

W;t )}. Furthermore, we
denote E(PG1i ) as the event that El occurs for some link
on PG1i .

Pr(E(G1)) = Pr

⎛

⎝
C(V∗

W;t )⋂

i=1

E(PG1i )

⎞

⎠

(a)=
C(V∗

W;t )∏

i=1

Pr(E(PG1i ))

(b)=
C(V∗

W;t )∏

i=1

1 −
(

1 − 1

2n

)Li

(c)≤
C(V∗

W;t )∏

i=1

1 −
(

1 − 1

2n

)L

=
(

1 −
(

1 − 1

2n

)L
)C(V∗

W;t)

(d)≤
(

L

2n

)C(V∗
W;t)

,

where:
(a) follows from the fact that the coefficients are generated

independently on each path;
(b) follows from the fact that the complement event of

E(PG1i ) is the event that El does not occur on each link
in the path PG1i ;

(c) follows from the notation L = maxi Li ;
(d) follows from applying Bernoulli’s inequality, (1 + x)r ≥

1 + r x , with x = − 1
2n and r = L.

D. Analysis of the Probability of Error

Following the direct method in Section VI, the probability
of error is analyzed for both cases: a negative and positive
sign of the term I (X; A) − I (Y ; A).

1) For the Case I (X; A) − I (Y ; A) ≥ 0: The events
corresponding to possible encoding and decoding errors are
as follows: An encoding error occurs if:

E1 = {� ∃i : (xn, An(i)) ∈ T (n)
ε (X, A)}.

For the events of decoding errors, we derive upper bounds
for some terminal node t ∈ D. Later on, we conclude the
complete achievable region by a union bound on all t ∈ D.
For a terminal node t ∈ D, a decoding error will occur for
any of the next events:

E2 = {(Xn, An, Y n) �∈ T (n)
ε (X, A, Y )}

E3 = {∃X̃n �= Xn, Ãn �= An : [X̃
n
, Ã

n
, Y n]BGt = Zt ,

(X̃n, Ãn, Y n) ∈ T (n)
ε (X, A, Y )}

E4 = {∃X̃n �= Xn : [X̃
n
, An, Y n]BGt = Zt ,

(X̃n, An, Y n) ∈ T (n)
ε (X, A, Y )}

E5 = {∃Ỹ n �= Y n : [Xn, An, Ỹ
n]BGt = Zt ,

(Xn, An, Ỹ n) ∈ T (n)
ε (X, A, Y )}

E6 = {∃X̃n �= Xn, Ỹ n �= Y n : [X̃
n
, An, Ỹ

n]BGt = Zt ,

(X̃n, An, Ỹ n) ∈ T (n)
ε (X, A, Y )}

E7 = {∃X̃n �= Xn, Ãn �= An, Ỹ n �= Y n :
[X̃

n
, Ã

n
, Ỹ

n]BGt = Zt ,

(X̃n, Ãn, Ỹ n) ∈ T (n)
ε (X, A, Y )}.

The total probability of an error can be bounded as:

P(n)
e = Pr(

7⋃

i=1

Ei )

≤ Pr(E1

⋃
E2) +

7∑

i=3

Pr(Ei )

≤ Pr(E1) + Pr(E2|EC
1 ) +

7∑

i=3

Pr(Ei ).

Let us derive an upper bound on each term separately.
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For E1, it is known from the covering lemma
[19, Lemma 3.3] that Pr(E1) → 0 for n → ∞ if we
fix rA = I (X; A) + ε.

Given the event EC
1 , and the fact that Y n is generated as

the output of a memoryless channel, we use the conditional
typicality lemma [19, Ch. 2] to show that Pr(E2|EC

1 ) → 0 as
n → ∞.

To upper-bound E3, we have

Pr(E3)

= Pr(∃X̃n �= Xn , Ãn �= An :
[X̃

n − Xn, Ã
n − An, 0]BGt = 0, (X̃n, Ãn, Y n) ∈ T (n)

ε )

=
∑

(xn,an,yn)

P(xn, an, yn) · Pr(∃X̃n �= xn, Ãn �= an :

[X̃
n − xn, Ã

n − an, 0]BGt = 0, (X̃n, Ãn, yn) ∈ T (n)
ε )

(a)=
∑

(xn,an,yn)

P(xn, an, yn)

×
∑

ãn∈Q
Pr(∃X̃n �= xn : [X̃

n − xn, ãn − an, 0]

×BGt = 0, (X̃n , ãn, yn) ∈ T (n)
ε |(ãn, yn) ∈ T (n)

ε )

=
∑

(xn,an,yn)

P(xn, an, yn)
∑

ãn∈Q

∑

x̃ n �=xn:
x̃ n∈T (n)

ε (X |Y,A)

Pr
([x̃n − xn, ãn − an, 0]BGt = 0

)

(b)≤
∑

(xn,an,yn)

P(xn, an, yn)
∑

ãn∈Q
∑

x̃ n �=xn :
x̃ n∈T (n)

ε (X |Y,A)

(
L1

2n

)C(V∗
s1;t )

(c)≤
∑

(xn,an,yn)

P(xn, an, yn)

×2n(rA−I (Y ;A)+2ε)|T (n)
ε (X |Y, A)|

(
L1

2n

)C(V∗
s1;t )

≤ 2n(I (X;A)−I (Y ;A)+H(X |Y,A)+3ε)

(
L1

2n

)C(V∗
s1;t )

,

where:

(a) follows from the notation

Q : = {ãn ∈ C : ãn �= an, (ãn, yn) ∈ T (n)
ε (A|Y )};

(b) follows from applying Lemma 1. The notation L1 denotes
the maximum path length between s1 and t . Note that the
binning rate r1 is greater than the source entropy H (X).
According to the source-coding theorem [19, Th. 3.4],
the probability that a bin contains two typical sequences
tends to zero as n → ∞. Hence, we can assume that if
Xn �= X̃n are two typical sequences, then Xn �= X̃

n
;

(c) follows from deriving an upper bound on |Q|. Namely,
we are interested in the amount of codewords in C that are
jointly typical with yn . One may think of it as a random
binning of the codebook at a rate of rA − I (Y ; A) − 2ε,
such that in each bin there are I (Y ; A) − ε sequences.

Since yn was generated according to an , which is differ-
ent from ãn , then with high probability there will be only
one sequence in each bin that is jointly typical with yn .
Therefore, the amount of ãn satisfying ãn ∈ Q is bounded
by the number of bins, i.e. 2n(rA−I (Y ;A)−2ε).

To upper-bound Pr(E4), we have

Pr(E4)

= Pr(∃X̃n �= Xn :
[X̃

n − X n, 0, 0]BGt = 0, (X̃n, An, Y n) ∈ T (n)
ε )

=
∑

(xn,an,yn)

P(xn, an, yn) Pr(∃X̃n �= xn :

[X̃
n − xn, 0, 0]BGt = 0, (X̃n , an, yn) ∈ T (n)

ε )

=
∑

(xn,an,yn)

P(xn, an, yn)
∑

x̃ n �=xn :
x̃ n∈T (n)

ε (X |Y,A)

Pr
(
[x̃ n − xn, 0, 0]BGt = 0|(x̃ n, an, yn) ∈ T (n)

ε

)

≤
∑

(xn,an,yn)

P(xn, an, yn)|T (n)
ε (X |Y, A)|

(
L1

2n

)C(V∗
s1;t )

≤
∑

(xn,an,yn)

P(xn, an, yn)2n(H(X |Y,A)+ε)

(
L1

2n

)C(V∗
s1;t )

≤ 2n(H(X |Y,A)+ε)

(
L1

2n

)C(V∗
s1;t )

.

To upper-bound Pr(E5), we have

Pr(E5)

= Pr(∃Ỹ n �= Y n :
[0, 0, Ỹ

n − Y n]BGt = 0, (Xn, An, Ỹ n) ∈ T (n)
ε )

=
∑

(xn,an,yn)

P(xn, an, yn) Pr(∃Ỹ n �= yn :

[0, 0, Ỹ
n − yn]BGt = 0, (xn, an, Ỹ n) ∈ T (n)

ε )

=
∑

(xn,an,yn)

P(xn, an, yn)

×
∑

ỹn �=yn :
ỹn∈T (n)

ε (Y |X,A)

Pr
(
[0, 0, ỹn − yn]BGt = 0

)

≤
∑

(xn,an,yn)

P(xn, an, yn)|T (n)
ε (Y |X, A)|

(
L2

2n

)C(V∗
s2;t )

=
∑

(xn,an,yn)

P(xn, an, yn)2n(H(Y |X,A)+ε)

(
L2

2n

)C(V∗
s2;t )

≤ 2n(H(Y |X,A)+ε)

(
L2

2n

)C(V∗
s2;t )

.

To upper-bound Pr(E6), we have

Pr(E6)

= Pr(∃X̃n �= Xn, Ỹ n �= Y n :
[X̃

n − Xn, 0, Ỹ
n − Y n]BGt = 0, (X̃n , An, Ỹ n) ∈ T (n)

ε )

=
∑

(xn,an,yn)

P(xn, an, yn) Pr(∃X̃n �= xn, Ỹ n �= yn :

[X̃
n − xn, 0, Ỹ

n − yn]BGt = 0, (X̃n, an, Ỹ n) ∈ T (n)
ε )
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=
∑

(xn,an,yn)

P(xn, an, yn)

×
∑

x̃ n �=xn,ỹn �=yn:
(x̃ n,an,ỹn)∈T (n)

ε (X,Y |A)

Pr
(
[x̃n − xn, 0, ỹn − yn]BGt = 0

)

≤
∑

(xn,an,yn)

P(xn, an, yn)|T (n)
ε (X, Y |A)|

(
L3

2n

)C(V∗
s1,s2;t )

≤ 2n(H(X,Y |A)+ε)

(
L3

2n

)C(V∗
s1,s2 ;t )

.

To upper-bound Pr(E7), we have

Pr(E7)

= Pr(∃X̃n �= Xn , Ãn �= An, Ỹ n �= Y n :
[X̃

n − Xn, Ã
n − An, Ỹ

n − Y n]BGt = 0,

(X̃n , Ãn, Ỹ n) ∈ T (n)
ε )

=
∑

(xn,an,yn)

P(xn, an, yn)
∑

ãn �=an :ãn∈C
Pr(∃X̃n �= xn, Ỹ n �= yn :

[X̃
n − xn, ãn − an, Ỹ

n − yn]BGt = 0,

(X̃n , ãn, Ỹ n) ∈ T (n)
ε )

=
∑

(xn,an,yn)

P(xn, an, yn)
∑

ãn �=an :ãn∈C
∑

x̃ n �=xn,ỹn �=yn:
(x̃ n,ãn,ỹn)∈T (n)

ε (X,Y |A)

Pr
(
[x̃n − xn, ãn − an, ỹn − yn]BGt = 0

)

≤ |C||T (n)
ε (X, Y |A)|

(
L3

2n

)C(V∗
s1,s2 ;t )

≤ 2n(I (X;A)+ε)2n(H(X,Y |A)+ε)

(
L3

2n

)C(V∗
s1,s2;t )

≤ 2n(I (X;A)+H(X,Y |A)+2ε)

(
L3

2n

)C(V∗
s1,s2;t )

.

To conclude the achievable region for this case, note that the
events E4 and E6 yield redundant constraints; thus, the total
probability of error tends to zero for a finite size of network,L3
and large n only if the inequalities in (7) are satisfied.

2) For the Case I (X; A) − I (Y ; A) ≤ 0: The events
corresponding to possible encoding and decoding errors in a
terminal node t ∈ D are as follows:

E1 = {� ∃An : (xn, An) ∈ T (n)
ε (X, A),BAn = Bxn }

E2 = {(Xn, An, Y n) �∈ T (n)
ε (X, A, Y )}

E3 = {∃X̃n �= Xn : [X̃
n
, An, Y n]BGt = Zt ,BAn = BX̃n ,

(X̃n , An, Y n) ∈ T (n)
ε (X, A, Y )}

E4 = {∃Ỹ n �= Y n : [X n, An, Ỹ
n]BGt = Zt ,

(Xn , An, Ỹ n) ∈ T (n)
ε (X, A, Y )}

E5 = {∃X̃n �= Xn, Ỹ n �= Y n : [X̃
n
, An, Ỹ

n]BGt = Zt ,

(X̃n , An, Ỹ n) ∈ T (n)
ε (X, A, Y )}

E6 = {∃X̃n �= Xn, Ãn �= An, Ỹ n �= Y n :
[X̃

n
, Ã

n
, Ỹ

n]BGt = Zt ,

(X̃n , Ãn, Ỹ n) ∈ T (n)
ε (X, A, Y )}.

Pr(E1) → 0 for n → ∞ from the covering lemma since each
bin BAn contains I (X; A) + ε codewords. Pr(E2|EC

1 ) → 0
as n → ∞ from the same arguments of the case I (X; A) −
I (Y ; A) ≥ 0. To upper-bound Pr(E3), we have

Pr(E3)

= Pr(∃X̃n �= Xn : [X̃
n − Xn, 0, 0]BGt = 0,

(X̃n, An, Y n) ∈ T (n)
ε ,BAn = BX̃n )

=
∑

(xn,an,yn)

P(xn, an, yn) Pr(∃X̃n �= xn :

[X̃
n − xn, 0, 0]BGt = 0, (X̃n, an, yn) ∈ T (n)

ε ,

Ban = BX̃n )

(a)=
∑

(xn,an,yn)

P(xn, an, yn)

×
∑

x̃ n∈Q
Pr

([x̃ n − xn, 0, 0]BGt = 0
)
,

Ban = Bx̃ n }
(b)≤

∑

(xn,an,yn)

P(xn, an, yn)|Q|
(

L1

2n

)C(V∗
s1;t )

(c)≤
∑

(xn,an,yn)

P(xn, an, yn)2n(H(X |Y,A)−�+2ε)

(
L1

2n

)C(V∗
s1;t )

≤ 2n(I (X;A)−I (Y ;A)+H(X |Y,A)+3ε)

(
L1

2n

)C(V∗
s1;t )

,

where:

(a) is due to the notation Q := ...; See page 5.
(b) follows from applying Lemma 1. The notation L1 denotes

the maximum path length between s1 and t . Note that
xn �= x̃ n implies xn �= x̃n from the same arguments in
the analysis of the case I (X; A) − I (Y ; A) ≥ 0;

(c) follows from deriving an upper bound on |Q|. Namely,
we are interested in the amount of source sequences X̃n

that are jointly typical with (yn, an), moreover the first
n� bits of x̃ n need to be identical to the bin Ban . The size
of this conditional typical set is 2n(H(X |Y,A)+2ε), since we
know the first n� bits the amount of sequences that fall
into this criteria is 2n(H(X |Y,A)−�).

To upper-bound Pr(E4), we have

Pr(E4)

= Pr(∃Ỹ n �= Y n : [Xn, An, Ỹ
n]BGt = Zt ,

(Xn, An, Ỹ n) ∈ T (n)
ε (X, A, Y ))

=
∑

(xn,an,yn)

P(xn, an, yn) · Pr(∃Ỹ n �= yn :

[0, 0, Ỹ
n − yn]BGt = 0, (xn, an, Ỹ n) ∈ T (n)

ε )

=
∑

(xn,an,yn)

P(xn, an, yn)

×
∑

ỹn∈T (n)
ε (Y |X,A)

Pr
(
[0, 0, ỹn − yn]BGt = 0

)
,

≤
∑

(xn,an,yn)

P(xn, an, yn)|T (n)
ε (Y |X, A)|

(
L2

2n

)C(V∗
s2;t )
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≤
∑

(xn,an,yn)

P(xn, an, yn)2n(H(Y |X,A)+2ε)

(
L2

2n

)C(V∗
s2;t )

≤ 2n(H(Y |X,A)+2ε)

(
L2

2n

)C(V∗
s2;t )

,

To upper-bound Pr(E5), we have

Pr(E5)

= Pr(∃X̃n �= Xn, Ỹ n �= Y n :
[X̃

n − X n, 0, Ỹ
n − Y n]BGt =0,

(X̃n, An, Ỹ n) ∈ T (n)
ε ,BAn = BX̃n )

=
∑

(xn,an,yn)

P(xn, an, yn) · Pr(∃X̃n �= xn, Ỹ n �= yn :

[X̃
n − xn, 0, Ỹ

n − yn]BGt = 0, (X̃n , an, Ỹ n) ∈ T (n)
ε )

≤
∑

(xn,an,yn)

P(xn, an, yn)

×
∑

x̃ n �=xn,ỹn �=yn :
(x̃ n,an,ỹn)∈T (n)

ε (X,Y |A)

Pr
(
[x̃n − xn, 0, ỹn − yn]BGt = 0

)

≤
∑

(xn,an,yn)

P(xn, an, yn)|T (n)
ε (X, Y |A)|

(
L3

2n

)C(V∗
s1,s2 ;t )

≤ 2n(H(X,Y |A)+ε)

(
L3

2n

)C(V∗
s1,s2;t )

.

To upper-bound Pr(E6), we have

Pr(E6)

= Pr(∃X̃n �= Xn, Ãn �= An, Ỹ n �= Y n : [X̃
n − X n,

Ã
n − An, Ỹ

n − Y n]BGt = 0,

(X̃n, Ãn, Ỹ n) ∈ T (n)
ε ,B Ãn = BX̃n )

=
∑

(xn,an,yn)

P(xn, an, yn)

× Pr(∃X̃n �= xn, Ãn �= an, Ỹ n �= yn :
[X̃

n − xn, Ã
n − an, Ỹ

n − yn]BGt = 0,

(X̃n, Ãn, Ỹ n) ∈ T (n)
ε ,B Ãn = BX̃n )

=
∑

(xn,an,yn)

P(xn, an, yn)
∑

x̃ n∈T (n)
ε (X)

Pr(∃ Ãn �= an, Ỹ n �= yn :

[x̃n − xn, ãn − an, Ỹ
n − yn]BGt = 0,

(x̃ n, Ãn, Ỹ n) ∈ T (n)
ε ,B Ãn = Bx̃ n)

(a)=
∑

(xn,an,yn)

P(xn, an, yn)
∑

x̃ n∈T (n)
ε (X)

∑

ỹn �=yn :
(x̃ n,ãn,ỹn)∈T (n)

ε (Y |X,A)

Pr
(
[x̃n − xn, ãn − an, ỹn − yn]BGt = 0

)

≤
∑

(xn,an,yn)

|T (n)
ε (X, Y |A)|

(
L3

2n

)C(V∗
s1,s2;t )

≤
∑

(xn,an,yn)

P(xn, an, yn)2n(H(X,Y |,A)+2ε)

(
L3

2n

)C(V∗
s1,s2;t )

≤ 2n(H(X)+H(Y |X,A)+2ε)

(
L3

2n

)C(V∗
s1,s2 ;t )

= 2n(I (X;A)+H(X,Y |A)+2ε)

(
L3

2n

)C(V∗
s1,s2;t )

,

where (a) follows from the fact that for a given x̃ n , there
is only one actions codeword denoted by ãn which is jointly
typical with x̃ n and satisfying Bãn = Bx̃ n .

Note that the constraint induced by the event E5 is redundant
and, therefore, the constraints in (7) are sufficient to show that
the total probability of error tends to zero as n tends to infinity.

VII. CONCLUSIONS AND FUTURE WORK

In the current work, we have considered the setup of
correlated sources with action-dependent joint distribution.
Specifically, the optimal rate regions were characterized for
the case where actions taken at the decoder and for the case
of actions taken at the encoder. Further, we have presented the
set of achievable rates for a scenario where action-dependent
sources are known at different nodes of a general network and
are required at a set of terminal nodes. Remarkably, RLNC was
proved to be optimal also for this scenario, even though this is
not a multicast problem. Moreover, the set of achievable rates
involved mutual information terms, which are not typical in
multicast problems. Two binary examples were studied, and it
was shown how actions affect the achievable rate region in a
non-trivial manner.

As can be seen from this and additional work [7]–[12],
actions have a significant impact on the set of achievable rates
in source coding problems and many classical source coding
problems can be extended using actions. One particular, as yet
unsolved, source coding problem that would be interesting to
study is the case of action-dependent source coding with a
helper. In this scenario the considered setup is of correlated
sources with actions, yet only a reconstruction of Xn is
required at the decoder. In the source coding helper problem,
the sequence Y n which is being transmitted on a rate-limited
link plays the role of SI and not of an information source as in
our model. The main difficulty in proving the converse follows
from the fact that Y n is not distributed i.i.d. as in the original
problem of source coding with a helper [6].
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