
3-1

Mathematical methods in communication

Lecture 3

Lecturer: Haim Permuter Scribe: Yuval Carmel, Dima Khaykin, Ziv Goldfeld

I. REMINDER

A. Convex Set

A set R is a convex set iff,

∀x1, x2 ∈ R, ∀θ, 0 ≤ θ ≤ 1, θx1 + θ̄x2 ∈ R, (1)

where θ̄ = 1− θ.

B. Convex Function

A function f : R 7→ R is a convex function iff,

∀x1, x2 ∈ R, ∀θ, 0 ≤ θ ≤ 1, f(θx1 + θ̄x2) ≤ θf(x1) + θ̄f(x2). (2)

Epigraph
f(x)

x

Fig. 1. Epigraph

• Epigraph1 is the set of points lying on or above its graph.

1epi-, ep- (Greek): above, over, on, upon

3-2

• Mathematical definition of f : Rn 7→ R: epif = {(x, µ) : x ∈ R
n, µ ∈ R, µ ≥

f(x)} ⊆ R
n+1

• A function is convex if and only if its epigraph is a convex set.

• If the second derivative of a function f : R 7→ R exists in the interval (a, b) and it

satisfies
d2f(x)
dx2 ≥ 0 for all x ∈ (a, b), then the function is convex in this domain

• A function may be convex even if the second derivative does not exists. The function

|x| is convex but the second derivative at x = 0 does not exists.

C. Convexity and Concavity of Information Theory Related Functions

• D(p||q) is a convex function in the pair (p, q)

D(p||q) =
∑

x p(x) log
p(x)
q(x)

≥ 0

D(p||q) = 0 ⇔ p(x) = q(x), ∀x ∈ X

• H(X) is concave in p(x)

• I(X ; Y) is concave in p(x), when p(y|x) is fixed

• I(X ; Y) is convex in p(y|x), when p(x) is fixed

II. LOSSLESS SOURCE CODING/ DATA COMPRESSION

In this section we look at a problem called lossless source coding. In this problem there

exists source sequence Xn = (X1, X2, ..., Xn), where the elements of source sequence

are distributed i.i.d. according to PX , and each symbol x ∈ X is encoded into a codeword

C(x) with length l(x). The receiver obtains the sequence of codewords {C(Xi)}
n
i=1, and

needs to reconstruct the source sequence {X̂i}
n
i=1 losslessly, namely, with probability 1.

Source sequence
X1, X2, . . . , Xn

Codeword
f(Xi) ∈ {0, 1}∗ X̂1, X̂2, . . . , X̂n

Encoder Decoder

Fig. 2. Lossless source coding problem. The encoder in the figure converts a value x ∈ X into sequence of bits

{0, 1} of variable length denoted as {0, 1}l(x), where Xi ∼ i.i.d p(x). The term l(x) is the length of the codeword

associated with value x ∈ X .

3-3

Definition 1 (Operational definition of instantaneous source coding) An

instantaneous source code C consists an encoding function

f : X 7→ {0, 1}l(x), (3)

where l(x) is the length of the codeword associated with symbol X , and a decoding

function that maps a sequence of bits into a sequence of estimated symbols X̂ .

Definition 2 (Lossless source code) We say that a code is lossless if Pr{Xn = X̂n} =

1.

Definition 3 (Expected length of a code) The expected length of a code is E[l(X)].

Here, our goal as engineers is to design a code that minimize the expected length of

a code. By the law of large number, since the source is i.i.d. then the average length of

the code will be with high probability E[l(X)]. The following example illustrates a code

and its expected length.

Example 1 (Mean Length) Let X be the source with an alphabet X = {A,B,C,D}

X =

A p = 1
2

B p = 1
4

C p = 1
8

D p = 1
8

(4)

Consider the following encoding function f , decoding function g, and the associated

code-length.

f(x) =

A → 0

B → 10

C → 110

D → 111

g(x) =

0 → A

10 → B

110 → C

111 → D

l(x) =

1 [bits]

2 [bits]

3 [bits]

3 [bits]

(5)

The expected code length obtained in this example is

E [l(X)] = 1
6

8
[bits] (6)

Definition 4 (Codebook) A codebook is a list of all codewords in the code.

3-4

For instance the codebook in Example 1 is {0, 10, 110, 111}. We would denote a

codeword by ci (e.g., c1 = 0, c2 = 10) and the length of codeword ci is li.

Definition 5 (Non-singular code) A code is non-singular if for any x1 6= x2 ⇒

f(x1) 6= f(x2)

Definition 6 (Uniquely Decodable Code) We say that a code is uniquely decodable, if

any extension of codewords is non-singular. An extension of codewords is a concatenation

f(x1)f(x2)f(x3)f(x4) . . . without any spaces or commas.

Definition 7 (Prefix code)

A code is a prefix code a.k.a instantaneous code , if no codeword is a prefix of any other

codeword.

Prefix

Uniquely Decodable

Non− Singular

Fig. 3. The relations between non-singular, uniquely-decodable and prefix code

Figure 3 illustrates the relations between the three different classes of codes defined

above.

3-5

III. KRAFT INQUALITY

Theorem 1 (Kraft Inequelity) For any prefix code c1, c2, . . . , cm, with length

l1, l2, . . . , lm, we have:
∑

i

2−li ≤ 1 (7)

If there is l1, l2, . . . , lm that satisfies (7), then there exists a prefix code with length

l1, l2, . . . , lm.

Proof:

We define: lmax = max {l1, l2, . . . , lm} . We are creating a Binary tree of depth lmax as

lmax

2lmax

leaves

1

11

1 111

0

00

0 000

Fig. 4. Binary Tree

depicted in Fig. 4. The left branch is associated with 1 in the code and the right branch

c1

c2

c3c4

1

11

1 111

0

00

0 000

Fig. 5. Codewords and Amount of Leaves

with 0 in the code. Now, we draw the codewords c1, c2,, cm on the tree as depicted in

Fig. 5.

3-6

The number of leaves (nodes at the bottom of the tree) associated with codeword ci

is 2lmax−li . Since the code is a prefix code, the leaves associated with the codewords are

disjoint. Therefore,
m
∑

i=1

2lmax−li ≤ 2lmax , (8)

and this implies that Kraft inequality given in (7) holds.

Now we prove the second direction. Namely, that if there is a list of lengths l1, l2, ..., lm

that satisfies the Kraft inequality, then there exists a codebook c1, c2, ..., cm with length

l1, l2, ..., lm that is a prefix codebook. The idea is to place the codewords on the tree in

such a way that there will be no overlap of the leaves associated with each codeword.

Let l1 ≤ l2 ≤ · · · ≤ lm. For length li associate 2lmax−li codewords and place the

codebook such that it covers only those leaves. For instance, l1 is with length of 1 bits

and reduces 4 leaves, in general, each codeword i reduces 2lmax−li leaves out of 2lmax

or 2−li fraction of the leaves. The next codeword has, therefore, another branch to start

from, meaning, different prefix. Since
∑

i 2
−li ≤ 1 there would be enough leaves to

associate with each codeword and because there is no overlap of the leaves the codebook

is a prefix codebook.

IV. LOWER BOUND ON EXPECTED LENGTH OF PREFIX CODE

Theorem 2 (Lower bound on expected length of prefix code) The expected length L

of any instantaneous (prefix) code for a random variable X is greater than or equal to

the entropy H (X); that is,

L ≥ H (X) . (9)

Proof: We can write the difference between the expected length and the entropy as

L−H (X) =
∑

i

pili +
∑

i

pi log pi (10)

= −
∑

i

pi log 2
−li +

∑

i

pi log pi. (11)

3-7

Let us normalize the term 2−li in order to obtain a pmf.

L−H (X) = −
∑

i

pi log
2−li

∑

j 2
−lj

+
∑

i

pi log
1

∑

j 2
−lj

+
∑

i

pi log pi. (12)

Now, by letting ri =
2−li

∑

j 2
−lj

, we obtain

L−H (X) = −
∑

i

pi log ri +
∑

i

pi log pi + log
1

∑

j 2
−lj

. (13)

Note that

∑

i

ri = 1. (14)

Using the definition of relative entropy we can write

L−H (X) = D (p||r) + log
1

∑

j 2
−lj

. (15)

Since D (p||r) ≥ 0 and log 1
∑

j 2
−lj

≥ 0 due to Kraft inequality, given in Theorem 1, we

obtained that L−H(X) ≥ 0 .

Note that equality is achieved if and only if

pi = 2−li, (16)

or equivalently,

li = log
1

pi
(17)

This leads to the following definition and corollary:

Definition 8 (D-adic distribution) A distribution, PX is called D-adic distribution if for

any x ∈ X , there exists an integer nx, s.t. P (x) = D−nx .

Corollary 1 (Optimality of 2-adic code) There exists a binary prefix code for a source

X with an average length H(X) if and only if X has a 2-adic .

3-8

V. SHANNON-FANO CODE

Lengths li of Shannon-Fano Code defined as

li =

⌈

log
1

pi

⌉

. (18)

These lengths satisfy the Kraft inequality

∑

i

2−li =
∑

i

2
−
⌈

log 1
pi

⌉

(19)

≤
∑

i

2
− log 1

pi (20)

=
∑

i

2log pi (21)

=
∑

pi (22)

= 1; (23)

hence according to Theorem 1, there exists a prefix code with lengths given in (18).

The expected length is bounded by

L =
∑

pili =
∑

pi

⌈

log
1

pi

⌉

(24)

≤

|X |
∑

i

pi

(

log
1

pi
+ 1

)

(25)

= H (X) + 1 (26)

Example 2 (Wrong coding) Let X ∼ p (x), and wrongly we assume X ∼ q (x), what

would be the expected length L while li =
⌈

log 1
qi

⌉

?

Solution:

Lq =
∑

pili =
∑

pi

⌈

log
1

qi

⌉

(27)

≤
∑

i

pi

(

log
1

qi
+ 1

)

(28)

=
∑

i

pi log
pi

qi
−
∑

i

pi log pi + 1 (29)

3-9

= D (p||q) +H (X) + 1 (30)

= D (p||q) + Lp (31)

The expected length is increased by D (p||q).

VI. HUFFMAN CODE

An optimal (shortest expected length) prefix code for a given distribution can be

constructed by a simple algorithm discovered by Huffman. Let us introduce Huffman

codes with some examples. Consider a random variable X taking values in the set

X = {1, 2, 3, 4, 5} with probabilities {0.3 0.25 0.25 0.1 0.1}, respectively. We expect

the optimal binary code for X to have the longest codewords assigned to the symbols

4 and 5. These two lengths must be equal, since otherwise we can delete a bit from

the longer codeword and still have a prefix code, but with a shorter expected length.

In general, we can construct a code in which the two longest codewords differ only in

the last bit. For this code, we can combine the symbols 4 and 5 into a single source

symbol, with a probability assignment 0.2. Proceeding this way, combining the two least

likely symbols into one symbol until we are finally left with only one symbol, and then

assigning codewords to the symbols, we obtain the tree that appears in Fig. 6. This code

Fig. 6. Example of a construction of Huffman Code

has average length 2.2 bits.

If the probability vector is dyadic, meaning pi = 2−ni , the Huffman code achieves

H (X).

3-10

Example:

In this case the expected length L is equal to entropy H (X):

L = E [li] =
1

2
· 1 +

1

4
· 2 +

1

8
· 3 +

1

8
· 3 = 1

6

8
= H (X) (32)

Optimality of Huffman code

Lemma 1 For any distribution, there exists an optimal instantaneous code (with mini-

mum expected length) that satisfies the following properties:

1) The lengths are ordered inversely with the probabilities (i.e. if pi ≥ pj, then li ≤ li).

2) The two longest codewords have the same length.

3) Two of the longest codewords differ only in the last bit and correspond to the two

least likely symbols.

APPENDIX I

ALTERNATIVE PROOF OF KRAFT’S INEQUALITY

We now present the infinite version of Kraft inequality.

Theorem 3 (Kraft’s Inequality) (i) For any prefix code {ci}i≥1, with lengths {li}i≥1

we have:

∑

i≥1

2−li ≤ 1 (33)

3-11

(ii) Conversely if {li} satisfies (34), then there exists a prefix code with these lengths.

Remark 1 The following proof of Kraft’s inequality is preferable compared to the

previous proof that was presented because it doesn’t demand a finite set of codewords

or lengths. However, part (i) of Theorem 3 is equivalent to saying that for any subset of

m-lengths l1, l2, l3, ..., lm from the code we have

∑

i≥1

2−li ≤ 1, (34)

and this follows directly from the finite version of Kraft inequality given in Theorem 1

since any subset of the code such as {c1, c2, ..., cm} is also a prefix code. However, part

(ii) of the theorem requires a reconstruction of a prefix-code of all infinite symbols and

the finite version can not be used.

The main idea of this proof is exactly the same idea as the proof with the tree just

that we use intervals on [0,1] rather then leaves. And instead of having disjoint leaves

we have here disjoint intervals.

Proof: We start by proving part (i):

Let {ci} be a prefix code, where ci is a codeword of length li = |ci|. We define a

function f : ci −→ [0, 1] that calculates the decimal value of ci, by:

f(ci) =

li
∑

j=1

ci,j · 2
−j

For future reference, we inspect the interval
[

f(ci), f(ci) + 2−li
)

. Note that:

1. 0 ≤ f(ci) ≤ 1.

2. f(ci000 . . . 0) = f(ci). i.e. adding zeroes at the end of the codeword does not change

the value of f(ci).

3. f(ci111 . . .) = f(ci) +
∑∞

j=1 2
(−li+j) = f(ci) + 2−li . This follows from the fact that

∞
∑

i=1

2−i = 1. (35)

3-12

We assume that the {ci} are arranged in an increasing lexicographic order1, which

means that f(ci) ≤ f(ck) for all i ≤ k.

Since ci is a prefix code we have:

f(ci+1) ≥ f(ci) + 2−li (36)

Thus, we get that the intervals
[

f(ci), f(ci) + 2−li
)

are pairwise disjoint.

By recurrent use of Inequality (36) we obtain:

f(cm) ≥

m
∑

i=1

2−li

Since, by definition f(cm) ≤ 1, this proves the first part of the theorem, i.e.

m
∑

i=1

2−li ≤ 1

We have seen that a necessary condition for a code {ci} to be prefix is that the

intervals
[

f(ci), f(ci) + 2−li
)

are pairwaise disjoint. The proof of the second part of the

theorem is based upon the claim that this condition is also sufficient:

Lemma 2 Given a code {ci} such that the intervals
[

f(ci), f(ci) + 2−li
)

are disjoint, the

code is prefix.

Remark 2 In the following proof we use the fact that in order to prove A ⇒ B one can

show that Bc ⇒ Ac (i.e. not B ⇒not A).

Proof: We conversly assume that the code {ci} is not prefix. If it is so, we can find

two codewords cm and cn (without loss of generality we assume m > n thus lm > ln),

for which the first |cn| bits of cm are identical to the bits of cn. In this case:

f(cm) =
lm
∑

j=1

cm,j · 2
−j =

ln
∑

j=1

cn,j · 2
−j +

lm
∑

j=ln+1

cm,j · 2
−j < f(cn) + 2−ln

1it is always possible to arrange a code in a lexicographic order however there might be infinite codewords that

have a lower lexicographic order then a specific codeword, hence assuming a finite index i is not always possible.

This can be corrected by avoiding the indexing i.

3-13

So we get that f(cm) < f(cn) + 2−ln , contradictly to the fact that the intervals
[

f(cn), f(cn) + 2−ln
)

and
[

f(cm), f(cm) + 2−lm
)

are pairwise disjoint. Thus the code

is prefix.

Proof: of (ii):

Assume that the lengths {li} are given and satisfy Kraft’s inequality (34). We prove

that we can find a prefix code with the given lengths. Without loss of generality, assume

that l1 ≤ l2 ≤ We define the word ci to be the inverse image under the mapping f of

the number
∑i−1

j=1 2
−lj , i.e. ci is the only word (up to addition of zeroes from the right)

such that the equality

f(ci) =

i−1
∑

j=1

2−lj

holds.

To calculate ci we use the function f−1 : [0, 1] −→ ci. In order to justify that use we

first show that 0 < f(ci) ≤ 1.

From the structure of f(ci) it is easy to see that f(ci) > 0 for every i. Moreover, using

the assumption of the theorem (i.e. inequality (34)) we get that

f(ci) =

i−1
∑

j=1

2−lj ≤ 1

for every i. Thus we get that 0 < f(ci) ≤ 1.

Next show that the length of every codeword ci that is built this way is indeed no

longer than li.

Again from the structure of f(ci), it is simple to see that the maximal number of bits

needed for the codeword ci is li−1 bits. Because we assume that the lengths are arranged

by rising order (i.e. li−1 ≤ li for every i), the length of each codeword ci cannot be longer

than |ci| = li. If it is shorter, we add zeroes from the right up to the wanted length.

To complete the proof, it is enough to show that the intervals

Ii =
[

f(ci), f(ci) + 2−li
)

=

[

i−1
∑

j=1

2−lj ,

i
∑

j=1

2−lj

)

3-14

are pairwise disjoint and finally use Lemma 1.

Since by definition, f (ci) increases as i increases and the right border of the interval

Ii is the left border of the interval Ii+1 , the intervals {Ii} are pairwise disjoint, which

concludes the proof.

