
10-1

Introduction to Information and coding theory

Lecture 10

Lecturer: Haim Permuter Scribe: Maxim Lvov

I. M ULTIPLE SOURCENETWORK

In previous lectures, we’ve seen that for a network, with onesource-one destination, the capacity (which is

the maximum transmission rate) is given by the Max-Flow Min-Cut theorem. If we had multiple destinations

(but only one source), the capacity was given by the formula

C = min
i∈D

min
S:

1∈S,i∈Sc







∑

j∈S,k∈Sc

Cjk







(1)

whereC is the capacity of the network,D is the set of all destinations,S is a subset of nodes containing

the source, andCjk is the capacity of the edge between the nodesj andk.

Now we consider the case, with multiple sources, where each source sends information with a rateRj

(j is the number of source).

Definition 1 (Multiple Source - Multiple Destination Network) A multiple sources - multiple destina-

tions network contains:

• V - A set of nodes, where each node receives and transmits messages.

• E - Set of edges between the nodes. An edge between the nodesi and j is denoted by(i, j)

• C - Set of capacities of each edge.

• X(i,j) = {0, 1}
C(i,j) - The alphabet sent at the edge(i, j).

• S - Set of all source nodes.

• D - Set of all destination nodes.

Every nodei ∈ V can sendC(i,j) bits on the error-free link(i, j) in a unit time, and these bits are functions

of:

• The bits received at the input links to node(i)

• The bits node(i) generates itself (if this is a source node).

Whenever a destinationd node wants to decode a messageM sent by a sources, the decoding is based

on both the bits received at the input links ofd, and on the bits generated at the noded itself (only if d

is a source node).

We also denote by:

• I(i) = set of all edges entering nodei.

10-2

• O(i) = set of all edges getting out from nodei.

You can see an example of such a network in Fig.I. The capacityof each edge is written near it. Each

R1

R2

D1

D2

1

1

1

1

1

2

2

2

3

3

4

Fig. 1. Diagram that shows a network with 2 sources and 2 destinations.

source generates a sequence of bits it wants to transmit to some set of destination nodes. Note that not

necessarily every destination needs to decode the messagesfrom all sources. For example, in the network

shown in Fig. I, the destinationD1 may want the bits generated only at the source2, while destination

D2 may want only the bits generated at the source1. In case of a multiple source-multiple destination

network, there is no longer a ”capacity” number C, but rathera capacity region which we shall explain

now.

Definition 2 (Network Code) For a given multiple source - multiple destination network with |S| sources

and |D| destinations, a network code(n, 2nR1 , ..., 2nR|S|) consists of:

• |E| encoding functionsf(i,j) :
{

X(k,i)|(k, i) ∈ I(i)
}n

×
{

1, ..., 2nRi
}

→ Xn
(i,j) whereRi is the rate

of the generated bits at nodei (Ri = 0 if i /∈ S)

• |D| · |S| decoding functionsgd,s :
{

X(i,d)|(i, d) ∈ I(d)
}n

×
{

1, ..., 2nRd
}

→
{

1, ..., 2nRs
}

for every

d ∈ D ands ∈ S.

Definition 3 (Error event) For a destinationd ∈ D and a sources ∈ S we define the probabilityPn
e,(d,s)

as the probability thatd hasn’t recovered correctly the message sent by the sources:

Pn
e,(d,s) = Pr {gd,s 6= Ms} (2)

Definition 4 (Achievable Rate) Given a multiple source-multiple destinations network, where the rate of

each source isRj (j is the number of source), then then-tuple (R1, .., Rk) is called achievable if there

exists a sequence of codes(n, 2nR1 , ..., 2nRk), such that the probability of error for each destinationPn
e,(d,s)

10-3

goes to zero whenn → ∞, for all s ∈ S. Note: when destinationd doesn’t want the message sent by the

sources, we don’t need the above limit to hold, that is, we don’t needPn
e,(d,s) → 0.

It is easy to see, that if then-tuple(R1, .., Rk) is achievable, then then-tuple(R∗
1, .., R

∗
k) is also achievable,

whereR∗
j ≤ Rj , but not vise-versa! We can define thecapacity region as the closure of the set of all

achievablen-tuples(R1, .., Rk).

Definition 5 (Capacity Region) Capacity Region is the set of alln-tuples(R∗
1, .., R

∗
k), such that for every

ǫ > 0 there exists an achievablen-tuple (R1, .., Rk) such that

‖(R∗
1, .., R

∗
k)− (R1, .., Rk)‖ < ǫ (3)

Where‖ · ‖ is some norm defined onRk

In the case of single source, the capacity region was the set[0, C], whereC was the supremum over all

of the achievable rates, but in the case of multiple sources,the capacity region is a high dimensional set.

For example, in the case of 2 sources, the capacity region canalways be described as a convex set inR
2,

as shown in Fig. 2.

Capacity Region

R1

R2

Fig. 2. Achievable rates and Capacity Region.

We will now limit us, to the case where there is only one destination, that should get all of the messages

sent by all sources, and there are two sources in the network (for more sources, the problem and the

solution is easily extended). We want to find the capacity region in that case. For that, we have the next

theorem.

Theorem 1 (Capacity Region for two sources)For a given ”two sources - single destination network”,

10-4

the capacity region is the set of all pairs(R1, R2) that satisfy the next equations:

R1 +R2 ≤ Csum , min
S







∑

j∈S,k∈Sc

Cjk|1, 2 ∈ S,N ∈ Sc







(4)

R1 ≤ C1 , min
S







∑

j∈S,k∈Sc

Cjk|1 ∈ S,N ∈ Sc







(5)

R2 ≤ C2 , min
S







∑

j∈S,k∈Sc

Cjk|2 ∈ S,N ∈ Sc







(6)

whereN is the destination node, and1, 2 are the source nodes.

Proof: We’ll first prove the converse, i.e., equations(4)− (6) must be satisfied if the pair(R1, R2)

is achievable. The proof is by contradiction: suppose first that the pair(R1, R2) is achievable and (4) isn’t

satisfied. Then look at another network, shown in Fig.3 (thisis a single source-single destination network).

This network is created, by taking the old network we had (with two sources), and adding a ”zero source”

0

2

1

N

Fig. 3. A new network, created from the old one, by adding the ”zero” source to the left

to the left. The zero source have two edges going from it, to nodes 1 and 2. Each such edge have infinite

capacity. The rest of the network, is as before. By the Max-Flow Min-Cut theorem, the capacity of the

new network, is given by:

C = min
S







∑

j∈S,k∈Sc

Cjk|0 ∈ S,N ∈ Sc







(7)

(a)
= min

S







∑

j∈S,k∈Sc

Cjk|0, 1, 2 ∈ S,N ∈ Sc







(8)

(b)
= min

S







∑

j∈S,k∈Sc

Cjk|1, 2 ∈ S,N ∈ Sc







(9)

= Csum (10)

Where:

10-5

• (a) follows from the fact, that in order to achieve the minimum, both nodes 1 and 2 should be included

in S (otherwise the sum will be infinite, since then at least one of the new edges with infinite capacities

will be in the cut betweenS andSc).

• (b) follows from the fact, that if1, 2 ∈ S and0 ∈ Sc then the sum will again be infinite (since both

of the new edges with infinite capacities will be in the cut), and therefore the minimum in (9) is

achieved only when0 ∈ S.

On the other hand, since(R1, R2) is achievable in the original network (by assumption), we can construct

the next code (in the new network) with a rateR = R1 + R2 > Csum by sendingR1 bits per second

on the (0,1) edge, andR2 bps on the (0,2) edge. The rest of the network coding is left asin the original

case (with two sources). This way, we’ve constructed a code in the new network (with one source) that

allows transmission with a rate higher than the capacity, which is impossible. Therefore, the assumption

that (4) isn’t satisfied was wrong. The other equations (5) and (6) if we assume that the sources dont share

their messages, since we can look at the problem as a one-source one-destination network, with one of

the sources that acts as a real source and the other source acts as an ordinary node. In that case, we know

from (1) that (5) and (6) must hold.

Achievability: To show achievability, we first assume that(R1, R2) satisfy the above inequalities(4)−(6),

and we construct a code(n, 2nR1 , 2nR2) for the network. First of all, we expand the original networkto

the one given in Fig.3, but this time, the capacitiesC(0,1), C(0,2) are

C(0,1) = R1, C(0,2) = R2 (11)

By the Max-Flow Min-Cut theorem, the capacity of this network given by the

C = min
S







∑

j∈S,k∈Sc

Cjk|0 ∈ S,N ∈ Sc







(12)

(a)
=







∑

j∈S,k∈Sc

Cjk|S = {0}







(13)

= R1 +R2 (14)

We explain why (a) is true: ifS contained both1 and 2 (and maybe any other nodes), then the sum in

(12) wouldn’t be belowCsum (by definition ofCsum), and therefore it wouldn’t be belowR1 +R2. If S

contained only one of the them (suppose0, 1 ∈ S and2 ∈ Sc) then the sum in(12) would be:

∑

j∈S,k∈Sc

Cjk

(a)
= R2 +

∑

0 6=j∈S,k∈Sc

Cjk ≥ (15)

(b)

≥ R2 +R1 (16)

10-6

where:

• (a) follows from the fact that the only edge connecting the source0 to Sc is the edge (0,2).

• (b) follows from equation (5) and the fact that1 ∈ S.

Since the capacity of the new one-source one-destination network is R1 + R2, there exists a code that

allows the source0 to send information with that rate. The only possible way forthis code to work, is if

the source0 sendsR1 bps on the edge(0, 1) andR2 bps on the edge(0, 2).

Therefore, we can take the new network, omit the0 source, and provideR1 bps to node1, andR2 bps to

node2, and the rest of the code is left as in the new network. In that way, the destinationN will receive

both massages without error.

Therefore(R1, R2) is achievable.

10-7

II. L INEAR NETWORK CODING ALGORITHM

In the previous lesson, we’ve seen that in a network with a single source and multiple destinations,

where all links capacities equal1, we can use linear network coding to reach the capacity of thenetwork.

We recall that in linear network coding, each nodet receives|I(t)| messages(m1, ..,m|I(t)|), and sends

on its outputs linear combinations of these messages. Everymessagemj is considered as a scalar from

the finite fieldF2n represented byn bits. An example for such network is given in Fig. 4. If we assume

that only one bit can be sent on every link in a unit time, then it will take n time units to send a scalar

on every link.

1

2 3

4

5

6
7

m1 m2

m12 = α1m1 + α2m2
m13 = α3m1 + α4m2

m
24 =

α
5m

12

m34 = α6m13

m45 = α9m24 + α10m34

m
3
7
=

α
8 m

1
3

m
2
6
=

α
7
m

1
2

m56 = α11m45 m57 = α12m45

M̂1 = α13m26 + α14m56

M̂2 = α15m26 + α16m56

M̂1 = α17m57 + α18m37

M̂2 = α19m57 + α20m37

Fig. 4. Linear network coding. Every output of each node is a linear combination of its inputs

For now, we’ll limit ourself to deal with networks that don’tcontain cycles. A cycle, is a situation, when

the edges in the network form a directed loop, as shown in Fig.5. In such networks, it is always possible to

write the network from top to bottom, as in Fig.4, where everyedge points down. Moreover, the messages

received by the destinations are linear combinations of themessages sent by the sources. More precisely,

10-8

2

1

Fig. 5. A cycle in the network is shown in red.

if we write the messages sent by the sources in a column vector(M1,M2, ...,MR)
T , and the messages

received by destinationd ∈ D in a column vector(M̂d
1 , M̂

d
2 , ..., M̂

d
R)

T , then the following relation holds:
















M̂d
1

M̂d
2

..

M̂d
R

















= Gd(α1, .., αq)

















M1

M2

..

MR

















(17)

The matrixGd(α1, .., αq) is called aglobal encoding kernel matrix, and it depends on the coefficients

{αi} and on the network structure. We want thatGd will be the identity matrix, or at least, an invertible

matrix, so the destination will be able to decode the messages (M1,M2, ...,MR)
T . We’ve shown in the

previous lesson, that there exists ann, and scalars{ai} such that the destinations can decode the messages

without error, or equivalently, that the matricesGd are invertible. We show now two algorithms for finding

these scalars. The first algorithm is based on choosing random coefficients, and with high probability, to

have a good network (the destinations will be able to decode the messages). The second algorithm will be

a deterministic one.

A. The First Algorithm (Random)

As mentioned before, we choose a relatively largen, and then choose the coefficients{ai} randomly

from the set{0, .., 2n − 1} independently of each other, with uniform distribution. Ifn is chosen large

enough (comparing to|E|), the probability to have invertible global encoding kernel matrices is almost

one.

Example 1 (Global encoding kernel matrices)We find the global encoding kernel matrices for destina-

tion 7 in the network given in for the network given in Fig. 4:

10-9





M̂1

M̂2



 =





α17 α18

α19 α20









m57

m37



 (18)





m57

m37



 =





α12 0

0 α8









m45

m13



 (19)





m45

m13



 =





α9 α10 0 0

0 0 α3 α4





















m24

m34

m1

m2

















(20)

















m24

m34

m1

m2

















=

















α5 0 0 0

0 α6 0 0

0 0 1 0

0 0 0 1

































m12

m13

m1

m2

















(21)

















m12

m13

m1

m2

















=

















α1 α2

α3 α4

1 0

0 1





















m1

m2



 (22)

The global encoding kernel matrix is:

G7 =





α17 α18

α19 α20









α12 0

0 α8









α9 α10 0 0

0 0 α3 α4





















α5 0 0 0

0 α6 0 0

0 0 1 0

0 0 0 1

































α1 α2

α3 α4

1 0

0 1

















(23)

=





α17 α18

α19 α20









α12 0

0 α8









α9α1α5 + α10α3α6 α9α2α5 + α10α4α6

α3 α4



 (24)

=





α1α5α9α12α17 + α3α6α10α12α17 + α3α8α18 α2α5α9α12α17 + α4α6α10α12α17 + α4α8α18

α1α5α9α12α19 + α3α6α10α12α19 + α3α8α20 α2α5α9α12α19 + α4α6α10α12α19 + α4α8α20





(25)

To check ifG7 is invertible, simply take the determinant of it, and check if its zero.

Theorem 2 (Probability of error for random network coding) In a one source - multiple destinations

network with the coefficients{α1, ..., αq} chosen randomly and independently with uniform distribution,

10-10

the probability that at least one global encoding kernel matrix Gd won’t be invertible goes to zero asn

tends to infinity, provided that the rateR ≤ C.

Proof: By the construction of the code, it can be seen that the entries in Gd are polynomials in

(α1, .., αq). To check if the matrixGd is invertible, we look at the determinant ofGd. This determinant

is a polynomialf(α1, ..., αq) with coefficients from the set{0, 1}. Note, that we treat(α1, ..., αq) as

variables, since they are not chosen yet. Now there are two cases:

• Case I: The determinantf(α1, ..., αq) is the zero polynomial (and hence, independent of{αi}). This

case cannot happen ifR ≤ C. To see why this is true, recall that in a single source - single destination

network, it is possible to transmit bits by simply routing them at different paths, to reach the destination.

By this way, it is possible to transmit bits at a rate equal to the capacity of the network (this was

proved for one source - one destination topology). This simple routing scheme, is just a special case

of linear network coding, whenn is taken to be1 (and the fieldF2 consists of the scalars{0, 1}).

In our case, we may have multiple destinations, but since we examine only one destination now, we

can treat it as a one destination network. For that destination, the polynomialf(α1, ..., αq) cannot be

the zero polynomial, since we know that there exist coefficientsα1, ..., αq ∈ F2 such that the matrix

Gd will be invertible.

• Case II: The determinantf(α1, ..., αq) is not the zero polynomial. In that case, it can be shown, that

if the coefficients{αi} are chosen i.i.d fromF2n then

lim
n→∞

Pr({f(α1, ..., αq) = 0}) = 0 (26)

The above analysis was done for one destination, in a networkthat may contain many (but a finite amount

of) destinations. Since for every destination, the probability in (26) tends to zero, the overall probability

(that at least one matrixGd isn’t invertible) also tends to zero.

To see why (26) is true, we have the following corollary

Corollary 1 Let f(α1, ..., αq) be a nonzero polynomial with coefficients in a fieldF , where|F | is greater

then the highest degree off in αi (1 ≤ i ≤ q). If (α1, ..., αq) are drown independently with uniform

distribution fromF , then we have

Pr{f(α1, ..., αq) 6= 0} ≥

(

1−
m

|F |

)q

(27)

Example 2 (Zeros of polynomials)Lets look at the polynomial

g(x) = x3 + 2x2 + x+ 1 (28)

wherex is chosen with uniform distribution fromF . Sinceg has at most 3 roots (it may have less in case

10-11

of degenerate), the probability thatg wont be zero is

P ≥ 1−
3

|F |
(29)

B. Initializing the network

If we use the above algorithm to choose the coefficients randomly, we need to know the global encoding

kernel matrices in order to decode the messages. If the network is large, it can be difficult to learn the

network. Instead, we can send pilot messages to learn the matricesGd. The source should first send the

messages
















M1

M2

..

MR

















=

















1

0

..

0

















,

















0

1

..

0

















, ..,

















0

0

..

1

















(30)

Every time, when the source sends the pilot messagem = ei(1 ≤ i ≤ R), every destinationd will receive

the i column of its matrixGd. After it receives all of it’s columns, it can put all vectorstogether to get

the matrixGd.

C. The Second Algorithm (Deterministic)

Before we show a deterministic algorithm for finding the coefficients {α1, .., αq}, we should recall a

statement that will help understand the algorithm.

Proposition 1 (Edge disjoint paths) In a single source network with all capacities equal to 1, the

maximum number of edge-disjoint paths from the source nodeS to nodet equals to the maximum flow

from S to t (which is also equal to the capacity of the network betweenS and t).

We also recall the statement that the network capacity for a single source network, is given by (1). If we

combine these two facts, we get to the conclusion, that for a single source - multiple destination network,

there can be found at leastC edge-disjoint paths from the source node, to each destination, whereC is the

capacity of the network. Note that for each destination, thepaths fromS to that destination are disjoint,

but if we consider two paths for different destinations, they aren’t necessary disjoint. If so, we can now

consider the network, that consists only from these paths (we can ignore edges that don’t belong to any

such path, since we can reach the capacity even without them). So the first step in the algorithm, is to

find C edge-disjoint path’s from the source node, to each destination, and then to ”delete” all remaining

edges (that don’t belong to any path). After doing so, we can order the nodes in our network, in a way,

so that each path go’s from top to bottom (like in Fig. 4). Now we shall explain, how the assignment

10-12

of {α1, .., αq} will be done. We’ll start with a lemma that will give us intuition on how to assign the

coefficients:

Lemma 1 (Global linear encoding) Consider a linear network coding network with one sources, and

some destinationd, which hasR edge-disjoint paths going froms to d. On every pathr ∈ {1, ..., R},

choose an arbitrary edgeir. Then the following two statements are true:

1) For every edgee(ir) you’ve chosen, the message that is sent over itm̃i is a linear combination of

the original messagesm1, ..,mR, that is

m̃i = gi,1m1 + ...+ gi,RmR, i = 1, 2, .., R (31)

2) If all original messages can be decoded at the destinationnode d, then allR equations (31) are

linearly independent.

Proof:

1) This is obvious, since we use linear network coding.

2) If the equations would be linearly dependent, we couldn’tdecode the original messages from

m̃1, .., m̃R, and therefore, we couldn’t decode them from the information that d receives, since

this information is a function of(m̃1, .., m̃R).

The above lemma, gives us an intuition, to how should we assign the coefficients{α1, .., αq} - we shall

assign them in such a way, so that if we chooseR arbitrary edge’s on different paths, then the equations

they are made of, should be linearly independent. We will do this in a recursive way: we’ll start from the

top edges, and go down, each time assigning the coefficients in the following way: for every edge, look at

the node that it goes from, and at the edge’s entering that node. Now choose a linear combination of the

messages on these edges, such that the new equation will be linearly independent with all other equations

for the messages from other paths, for all of the destinations.

We’ll summarize the algorithm:

10-13

Algorithm 1 Deterministic algorithm for assigning local encoding kernels

1) Calculate the capacityC of the network, using equation (1), and choose a rateR ≤ C.

2) Order the nodes of the network in a sequence such that if there is an edge from nodei to nodej, then

nodei appears before nodej in the sequence. Such a sequence is calledupstream-to-downstream

order.

3) For every destinationd ∈ D, find R edge-disjoint paths going from the source nodeS to d, and

write all of them, so that you’ll be able to see, which edges belong to every path. Write them in

the following way:Pd(r) = a sequence of all edges in the pathr from the source to noded.

Delete all of the edge’s, that don’t belong to any path.

4) For every edge(i, j) in your network, write a vectorr(i,j) = [b1, .., b|D|], wherebk is the number

of path that goes through it, fromS to dk. If there is no such path, thenbk = 0.

5) For every destinationd ∈ D, create a global encoding kernel matrixGd, which we’ll initialize

as the Identity matrix, withR raws and columns. These matrices will contain the coefficients gil,

given in (31), and they’ll change as we go from top to bottom.

6) Add R virtual edges entering the source (with no origin). Near every virtual edgeei write a raw

vectorvi which is thei’th vector in the standard basis of the vector spaceFR.

7) Now start going over all nodes by the upstream-to-downstream order. For every nodet, and for

every edgee ∈ O(t), do the following:

• Look at all the vectorsfl near every edgel ∈ I(t). Find a linear combination of these vectors:

fe =
∑

l∈I(t)

αe,lfl (32)

That will satisfy the next condition: for every destinationd ∈ D, if it has a pathr going through

the edgee, then the new matrixGd obtained from the old one by replacing its rawr by fe

should be invertible. It can be shown that if|F | > |D| then such linear combination can be

found, withαe,l ∈ F, ∀(e, l).

• Write the vectorfe near the edgee, and replace it with the corresponding raws in the matrices

{Gd}d∈D, as described above. Note: the vectors{fe}e∈E are calledglobal encoding kernels,

and they satisfy

xe = fe · (m1, ...,mR)
T (33)

wherexe is the symbol sent at edgee.

8) At the end of the process, in order to obtain the transmitted symbols (m1, ...,mR), every

destinations solves
















m1

m2

..

mR

















= (Gd)
−1

















m̃1

m̃2

..

m̃R

















(34)

where{m̃1, ..., m̃R} are the symbols received at the destination.

10-14

Example 3 (Assigning local encoding kernels)As an example, we can consider the network given in

Fig. 4. We’ll follow the above steps, to findα1, .., α20.

1) The capacity of this network is C=2 (you can calculate it, as an exercise). Thats also the reason,

why we includedR = 2 packetsm1,m2 in the source.

2) Already ordered from top to bottom in Fig.4.

3) There are two edge-disjoint path’s from source node1 to node6, and also to node7.

There are no ”useless nodes” in this example, so there is nothing to ”delete”. The paths going from

S = 1 to d1 = 6 and tod2 = 7 are:

{P1(1) = (1, 2, 6), P1(2) = (1, 3, 4, 5, 6)}

{P2(1) = (1, 3, 7), P2(2) = (1, 2, 4, 5, 7)} (35)

4) The edge-vectors are:

r(1,2) = [1, 2], r(1,3) = [2, 1], r(2,4) = [0, 2],

r(3,4) = [2, 0], r(2,6) = [1, 0], r(4,5) = [2, 2],

r(1,2) = [1, 2], r(5,6) = [2, 0], r(5,7) = [0, 2]

(36)

5) We create the global encoding kernel matrices:

G1 =





10

01



 , G2 =





10

01



 (37)

6) We add the virtual edges with the standard basis vectors written close to them.

m1, [1, 0]
m2, [0, 1]

S

Fig. 6. Sources virtual edges.

7) Let’s go over all nodes, from top to bottom:

Edge(1, 2): it’s edge-vector isr(1,2) = [1, 2], and therefore, the first raw inG1, and the second raw

in G2 correspond to the paths that pass through this edge. The raw vectors are:

f1,s = (1, 0), f2,s = (0, 1) (38)

10-15

If we choose

α1 = 1, α2 = 1 (39)

Then the new vector

f(1,2) = α1f(1,s) + α2f(2,s) = (1, 1) (40)

can replace the raws 1 and 2 inG1 andG2 respectively, keeping them invertible. So now, we have

G1 =





11

01



 , G2 =





10

11



 (41)

Edge (1,3): It’s edge-vector isr(1,3) = [2, 1], and therefore, the second raw inG1, and the first raw

in G2 correspond to the paths that pass throw this edge. We have

f1,s = (1, 0), f2,s = (0, 1) (42)

If we choose

α3 = 1, α4 = 0 (43)

Then the new vector

f(1,3) = α3f1,s + α4f2,s = (1, 0) (44)

can replace the second and the first raws inG1, G2 respectively, by keepingG1 andG2 invertible.

The new global encoding kernel matrices will be:

G1 =





11

10



 , G2 =





10

11



 (45)

Edge(2, 4): We can of course go as we mentioned before, but in this case, there is only one input

to the node(2), and therefore only one coefficientα5. In such cases, we can always choose that

coefficient to be 1, and don’t change the global encoding kernel matrices. That’s also the case with

the edges(2, 6), (3, 4), (3, 7).

Edge(4, 5): The edge-vector is:r(2,4) = [2, 2] and therefore, the second raw inG1 and in G2

correspond to the paths that pass throw this edge. We have

f(2,4) = (1, 1), f(3,4) = (1, 0). (46)

We should findα9, α10 such that the vector

f(4,5) = α9f(2,4) + α10f(3,4) (47)

10-16

will replace the second raws inG1, G2, and keep them invertible. We can take, for instance,

α9 = α10 = 1 (48)

(we’re working in theF2 field for now), so the new vector that will replace the second raws is:

f(4,5) = (0, 1) (49)

And the transfer matrices will be:

G1 =





11

01



 , G2 =





10

01



 (50)

Now we’ve almost finished, since in edges(5, 6), (5, 7) we can takeα11 = α12 = 1 from the same

considerations as in(2, 4).

The destination nodes6, 7 can now decode the original messages sent by the source, using the final

global encoding matrices:




M1
1

M1
2



 = (G1)
−1





m2,6

m5,6



 ,





M2
1

M2
2



 = (G2)
−1





m3,7

m5,7



 (51)

whereMd
i is the reconstruction of messageMi by decoderd.

