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Introduction to Information and coding theory

Lecture 10

Lecturer: Haim Permuter Scribe: Maxim Lvov

I. MULTIPLE SOURCENETWORK

In previous lectures, we've seen that for a network, with merce-one destination, the capacity (which is
the maximum transmission rate) is given by the Max-Flow giat theorem. If we had multiple destinations

(but only one source), the capacity was given by the formula

C = min min Z Cik 1)

iep 1es”‘,;{esc jeS, kese
whereC' is the capacity of the networl) is the set of all destinations, is a subset of nodes containing
the source, and’;;, is the capacity of the edge between the noglesid k.
Now we consider the case, with multiple sources, where eaalte sends information with a rafe,

(j is the number of source).

Definition 1 (Multiple Source - Multiple Destination Network) A multiple sources - multiple destina-

tions network contains:

« V - A set of nodes, where each node receives and transmits gesssa

o & - Set of edges between the nodes. An edge between the nhaaesj is denoted by(i, )

« C - Set of capacities of each edge.

o Xu, ) =10, 1396 - The alphabet sent at the edge;).

« S - Set of all source nodes.

o D - Set of all destination nodes.
Every nodei € V can send’(; ;) bits on the error-free linki, j) in a unit time, and these bits are functions
of:

« The bits received at the input links to no¢g

« The bits nodg(¢) generates itself (if this is a source node).
Whenever a destinatiosh node wants to decode a messdgesent by a sourca, the decoding is based
on both the bits received at the input links @fand on the bits generated at the netiself (only if d
is a source node).

We also denote by:

« Z(i) = set of all edges entering node
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« O(i) = set of all edges getting out from node

You can see an example of such a network in Fig.l. The capa€igach edge is written near it. Each

Ry

1

Fig. 1. Diagram that shows a network with 2 sources and 2 ri&tins.

source generates a sequence of bits it wants to transmitnte set of destination nodes. Note that not
necessarily every destination needs to decode the mesageall sources. For example, in the network
shown in Fig. |, the destinatio®; may want the bits generated only at the sou2cevhile destination
D, may want only the bits generated at the sourcén case of a multiple source-multiple destination
network, there is no longer a "capacity” number C, but ratheapacity region which we shall explain

now.

Definition 2 (Network Code) For a given multiple source - multiple destination netwoiikws| sources
and |D| destinations, a network code, 2", ..., 2"%is) consists of:
« |€| encoding functionsf(; ;) : { Xk |(k,3) € Z(i)}" x {1,...,2"%} — X[ ;) whereR; is the rate
of the generated bits at nodgR; =0 if i ¢ S)
« |D|-|S| decoding functiongy s : { Xii.a)|(i,d) € Z(d)}" x {1,...,2"} — {1,...,2"F} for every
deDands € S.

Definition 3 (Error event) For a destinationl € D and a source € S we define the probability?g(d s)

as the probability thatl hasn’t recovered correctly the message sent by the saurce
Perf(d,s) = Pr{gas # M} 3

Definition 4 (Achievable Rate) Given a multiple source-multiple destinations network evehthe rate of
each source iR, (j is the number of source), then thetuple (R, .., Ry) is called achievable if there

exists a sequence of codgs 2" ..., 2n% ) such that the probability of error for each destinathi’ld_s)
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goes to zero when — oo, for all s € S. Note: when destinatiod doesn’t want the message sent by the

sources, we don't need the above limit to hold, that is, we don't né€q, ., — 0.

Itis easy to see, that if the-tuple (Ry, .., Ry) is achievable, then the-tuple (R7, .., R}) is also achievable,
where R7 < Rj;, but not vise-versa! We can define thapacity region as the closure of the set of all

achievablen-tuples(Ry, .., Ry).
Definition 5 (Capacity Region) Capacity Region is the set of alltuples(Ry, .., R}), such that for every
e > 0 there exists an achievabietuple (R, .., Ri) such that

H( TV'?RZ)_(Rly-ka)H <€ (3)

Where|| - || is some norm defined oR*

In the case of single source, the capacity region was thé@s€f, whereC' was the supremum over all
of the achievable rates, but in the case of multiple sourttescapacity region is a high dimensional set.
For example, in the case of 2 sources, the capacity regiomleays be described as a convex seRM)

as shown in Fig. 2.

Ry

Capacity Region

Fig. 2. Achievable rates and Capacity Region.

We will now limit us, to the case where there is only one desdtom, that should get all of the messages
sent by all sources, and there are two sources in the netviorkrore sources, the problem and the
solution is easily extended). We want to find the capacityoredn that case. For that, we have the next

theorem.

Theorem 1 (Capacity Region for two sources)For a given "two sources - single destination network”,
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the capacity region is the set of all paifB;, R2) that satisfy the next equations:

Ri+ Ry < Com 2min{ Y Cull,2€ S,N e (4)
o JES,kES®
Ry < C1 £ min > CilleS Nese (5)
JESkES*”
Ry gcgémsm > Cil2e S Nese (6)
jESkES*”

where N is the destination node, and2 are the source nodes.

Proof: We'll first prove the converse, i.e., equatiofiy — (6) must be satisfied if the pa{R;, R»)
is achievable. The proof is by contradiction: suppose firat the pair( R, R2) is achievable and (4) isn’t
satisfied. Then look at another network, shown in Fig.3 (this single source-single destination network).

This network is created, by taking the old network we hadKiwito sources), and adding a "zero source

\@1 o

Fig. 3. A new network, created from the old one, by adding therd” source to the left

to the left. The zero source have two edges going from it, thesdl and 2. Each such edge have infinite
capacity. The rest of the network, is as before. By the MawMin-Cut theorem, the capacity of the

new network, is given by:

C=ming Y CiploeS Nese @)
s jES,kese
Ymind 3 Culo,1,2€ 5N €5 )
s jeS,kesSe
@msin > Cpl2e S Nese 9)
jeS,kesSe

Where:
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« (a) follows from the fact, that in order to achieve the minimwoth nodes 1 and 2 should be included
in S (otherwise the sum will be infinite, since then at leagt ofithe new edges with infinite capacities
will be in the cut betweery and S¢).

« (b) follows from the fact, that ifl, 2 € S and0 € S¢ then the sum will again be infinite (since both
of the new edges with infinite capacities will be in the cut)daherefore the minimum in (9) is

achieved only whei) € S.

On the other hand, sindgR;, R) is achievable in the original network (by assumption), we canstruct
the next code (in the new network) with a rae= R, + Ro > Cs.m by sendingR, bits per second
on the (0,1) edge, an&; bps on the (0,2) edge. The rest of the network coding is lefhdbe original
case (with two sources). This way, we've constructed a cadéeé new network (with one source) that
allows transmission with a rate higher than the capacityclvis impossible. Therefore, the assumption
that (4) isn’t satisfied was wrong. The other equations (5)) @ if we assume that the sources dont share
their messages, since we can look at the problem as a oneesone-destination network, with one of
the sources that acts as a real source and the other souscasaa ordinary node. In that case, we know
from (1) that (5) and (6) must hold.

Achievability: To show achievability, we first assume tti&t; , R,) satisfy the above inequaliti€d)—(6),
and we construct a code, 21 272 for the network. First of all, we expand the original netwaok

the one given in Fig.3, but this time, the capacitigg i), Co,2) are
Co,1) = R1,C0,2) = R2 (11)

By the Max-Flow Min-Cut theorem, the capacity of this netlwgiven by the

C = min Cikl0 € S,N € 5°¢ (12)
5\ jedmese

(2{ 3 cjksz{o}} (13)

jEeS,keSe

=Ri+ Ry (14)

We explain why (a) is true: ifS contained bothl and2 (and maybe any other nodes), then the sum in
(12) wouldn’t be belowC,,,, (by definition of Cs.,.,), and therefore it wouldn't be beloR; + R. If S
contained only one of the them (suppdsé € S and2 € S°) then the sum in(12) would be:

Z Cik (g) Ry + Z Cir > (15)

jeS, keSe 0#£j€S,kESe

()
> Ry + Ry (16)
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where:

« (a) follows from the fact that the only edge connecting theree0 to S°¢ is the edge (0,2).

« (b) follows from equation (5) and the fact thate S.
Since the capacity of the new one-source one-destinatitmonle is R; + R», there exists a code that
allows the sourcé® to send information with that rate. The only possible waytfis code to work, is if
the sourced sendsR; bps on the edgé0, 1) and R, bps on the edg€0, 2).
Therefore, we can take the new network, omit theource, and provid&, bps to nodel, and R, bps to
node2, and the rest of the code is left as in the new network. In that, whe destinatiorV will receive
both massages without error.

Therefore(R;1, Rs) is achievable. [ ]
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II. LINEAR NETWORK CODING ALGORITHM

In the previous lesson, we've seen that in a network with glsisource and multiple destinations,
where all links capacities equa) we can use linear network coding to reach the capacity ohétaork.
We recall that in linear network coding, each nddeceives/Z(t)| messagesm,, .., m|Z(t)|), and sends
on its outputs linear combinations of these messages. Hwessagen; is considered as a scalar from
the finite field F»-» represented by bits. An example for such network is given in Fig. 4. If we assu

that only one bit can be sent on every link in a unit time, thewill take n time units to send a scalar

on every link.

mi3 = asmi + aum
mig = q1my + My 13 311+

m3q = gTN13

Mmys5 = QgMag + Qt10M34

Mo = Q7M19

/ €Tl —= Lt \\

Mmy7 = 12145

X

My = ayrmsy + aigmsy

Mse = 11145

My = a13mae + apamse

My = aasmas + argmse My = angmsr + azomsy

Fig. 4. Linear network coding. Every output of each node iadr combination of its inputs

For now, we’ll limit ourself to deal with networks that dorcontain cycles. A cycle, is a situation, when
the edges in the network form a directed loop, as shown irbFig.such networks, it is always possible to
write the network from top to bottom, as in Fig.4, where evedge points down. Moreover, the messages

received by the destinations are linear combinations ofhtkeesages sent by the sources. More precisely,
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Fig. 5. A cycle in the network is shown in red.

if we write the messages sent by the sources in a column vétfer Ms, ..., Mz)T, and the messages

received by destinatiod € D in a column vector( M, My, ..., ME)T, then the following relation holds:

MY M,
MY M,

=Gqlaq,..,aq) a7
Mg Mpg

The matrix Gg4(aq, .., o) is called aglobal encoding kernel matrix, and it depends on the coefficients
{a;} and on the network structure. We want tkiat will be the identity matrix, or at least, an invertible
matrix, so the destination will be able to decode the messayg, M, ..., Mg)T. We've shown in the
previous lesson, that there existssarand scalarga;} such that the destinations can decode the messages
without error, or equivalently, that the matric€g are invertible. We show now two algorithms for finding
these scalars. The first algorithm is based on choosing rnaratefficients, and with high probability, to
have a good network (the destinations will be able to decbdartessages). The second algorithm will be

a deterministic one.

A. The First Algorithm (Random)

As mentioned before, we choose a relatively largeand then choose the coefficiens; } randomly
from the set{0,..,2™ — 1} independently of each other, with uniform distribution.zlfis chosen large
enough (comparing t&€]), the probability to have invertible global encoding kérratrices is almost

one.

Example 1 (Global encoding kernel matrices)We find the global encoding kernel matrices for destina-

tion 7 in the network given in for the network given in Fig. 4:
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M « a m
’ ) _ 17 18 57 (18)
M, Q19 Q20 ma7
msr| [ o2 0 m45 (19)
may 0 oag m13
Moy
m ag o« 0 0 m
45| _ 9 10 34 (20)
mi3 0 0 a3 Q4 mi
ma
Moy Qs 0 0 0 mi9
m 0 ag 0 O m
34 _ 6 13 1)
mq 0 0 1 0 mq
mao 0 0 0 1 mo
mi2 a1 Qg
m ag o« m
13| _ 3 4 1 22)
mi 1 0 mo
mo 0 1
The global encoding kernel matrix is:
(6751 0 0 0 a1 Q9
G7 _ Q17 Q18 12 0 Qg (10 0 0 0 (675 0 0 a3 Q4 (23)
19 Q20 0 ag 0 0 a3 Q4 0 0 1 0 1
0 0 0 1 0 1
_[awr aus) [0z O Qg5 + Q10030 QgQa(l5 + QlpQ4 Qg (24)
Q19 Q0 0 as as oy

Q15090120017 + Q310120017 + 31y Qa9 (r12Q17 + Qg 1217 + QLag (vl
Q10509012009 + Q311209 + Qi3gizg Qa9 (X 219 + Qg1 (V1219 + (Y g (i
(25)
To check ifG7 is invertible, simply take the determinant of it, and chettks zero.

Theorem 2 (Probability of error for random network coding) In a one source - multiple destinations

network with the coefficient§a, ..., oy} chosen randomly and independently with uniform distritoaiti
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the probability that at least one global encoding kernelrinat; won't be invertible goes to zero as

tends to infinity, provided that the rafe < C.

Proof: By the construction of the code, it can be seen that the entni¢7; are polynomials in
(a1, ..,aq). To check if the matrixG is invertible, we look at the determinant 6f;. This determinant
is a polynomial f(cu, ..., a4) with coefficients from the sef0,1}. Note, that we treafas, ..., ) as

variables, since they are not chosen yet. Now there are taesca

« Case 1 The determinanf(a, ..., y) is the zero polynomial (and hence, independenfw@f}). This

case cannot happeniff < C. To see why this is true, recall that in a single source - simigistination
network, it is possible to transmit bits by simply routingth at different paths, to reach the destination.
By this way, it is possible to transmit bits at a rate equalhe tapacity of the network (this was
proved for one source - one destination topology). This Bmputing scheme, is just a special case
of linear network coding, when is taken to bel (and the fieldF, consists of the scalar, 1}).
In our case, we may have multiple destinations, but since xaen@ae only one destination now, we
can treat it as a one destination network. For that destinathe polynomialf(as, ..., a4) cannot be
the zero polynomial, since we know that there exist coefiisiey, ..., oy € F5 such that the matrix
G4 will be invertible.

« Case Il The determinanff(«, ..., aq) is not the zero polynomial. In that case, it can be shown, that

if the coefficients{«;} are chosen i.i.d fronfy- then

lim Pr({f(c1,....,qq) =0}) =0 (26)

n—o0

The above analysis was done for one destination, in a netthatkmay contain many (but a finite amount
of) destinations. Since for every destination, the proligin (26) tends to zero, the overall probability
(that at least one matri&, isn’t invertible) also tends to zero. ]

To see why (26) is true, we have the following corollary

Corollary 1 Let f(«q, ..., a;) be a nonzero polynomial with coefficients in a figld where|F| is greater
then the highest degree g¢fin o; (1 < i < ¢). If (ev,...,4) are drown independently with uniform

distribution fromF', then we have

m q
Pr{f(ar,..ap) # 0} > (1 - |F> (27)
Example 2 (Zeros of polynomials)Lets look at the polynomial

glx) =2+ 22 + o +1 (28)

wherez is chosen with uniform distribution fromt’. Sinceg has at most 3 roots (it may have less in case
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of degenerate), the probability thatwont be zero is

3
P>1- = (29)
|F|

B. Initializing the network

If we use the above algorithm to choose the coefficients nahgave need to know the global encoding
kernel matrices in order to decode the messages. If the retiwdarge, it can be difficult to learn the

network. Instead, we can send pilot messages to learn thécesat’;. The source should first send the

messages
M, 1 0 0
M, 0 1 0
- 9 PR (30)
Mg 0/ \o 1

Every time, when the source sends the pilot message e;(1 < i < R), every destinatior will receive
the ¢ column of its matrixG,. After it receives all of it's columns, it can put all vectommgether to get

the matrixG.

C. The Second Algorithm (Deterministic)

Before we show a deterministic algorithm for finding the dioéfnts {«, .., oy}, we should recall a

statement that will help understand the algorithm.

Proposition 1 (Edge disjoint paths) In a single source network with all capacities equal to 1, the
maximum number of edge-disjoint paths from the source n®de nodet equals to the maximum flow

from S to t (which is also equal to the capacity of the network betwSesndt).

We also recall the statement that the network capacity fangles source network, is given by (1). If we
combine these two facts, we get to the conclusion, that fonglessource - multiple destination network,
there can be found at leaSt edge-disjoint paths from the source node, to each desimatihereC' is the
capacity of the network. Note that for each destination,ghths fromsS to thatdestination are disjoint,
but if we consider two paths for different destinations,ytla@en’t necessary disjoint. If so, we can now
consider the network, that consists only from these patlesqan ignore edges that don’t belong to any
such path, since we can reach the capacity even without tHemjhe first step in the algorithm, is to
find C' edge-disjoint path’s from the source node, to each de&iimaand then to "delete” all remaining
edges (that don't belong to any path). After doing so, we aalerothe nodes in our network, in a way,

so that each path go’s from top to bottom (like in Fig. 4). Now shall explain, how the assignment
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of {aq,..,a,} will be done. We'll start with a lemma that will give us intish on how to assign the

coefficients:

Lemma 1 (Global linear encoding) Consider a linear network coding network with one souscend
some destinatior, which hasR edge-disjoint paths going from to d. On every path- € {1, ..., R},
choose an arbitrary edge. Then the following two statements are true:

1) For every edge; ) you've chosen, the message that is sent ovei,itis a linear combination of

the original message®, .., mg, that is
m; = g;1m1 + ... + gi RMR, 1=12,.,R (31)

2) If all original messages can be decoded at the destinatiae d, then all R equations (31) are

linearly independent.

Proof:

1) This is obvious, since we use linear network coding.

2) If the equations would be linearly dependent, we couldlgétode the original messages from
m1,..,mpg, and therefore, we couldn't decode them from the infornmatibat d receives, since
this information is a function ofmy, .., mg).

[ ]
The above lemma, gives us an intuition, to how should we assig coefficient a1, .., oy } - we shall
assign them in such a way, so that if we chodsarbitrary edge’s on different paths, then the equations
they are made of, should be linearly independent. We willhds in a recursive way: we'll start from the
top edges, and go down, each time assigning the coefficientsifollowing way: for every edge, look at
the node that it goes from, and at the edge’s entering thag.ngdw choose a linear combination of the
messages on these edges, such that the new equation witidaelyi independent with all other equations

for the messages from other patlfigr all of the destinations

We'll summarize the algorithm:
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Algorithm 1 Deterministic algorithm for assigning local encoding leden

1)
2)

3)

4)

5)

6)

7)

8)

Calculate the capacitg' of the network, using equation (1), and choose a fat€ C.

Order the nodes of the network in a sequence such thatrd than edge from nodeto nodej, then
node: appears before nodgin the sequence. Such a sequence is calfstteam-to-downstream
order.

For every destinatiod € D, find R edge-disjoint paths going from the source ndfi¢o d, and
write all of them, so that you'll be able to see, which edgelog to every path. Write them in
the following way: P,;(r) = a sequence of all edges in the patfrom the source to nodé.
Delete all of the edge’s, that don't belong to any path.

For every edgéi, j) in your network, write a vector; ;) = [by, .., bp|], Whereby, is the number
of path that goes through it, frorfi to di. If there is no such path, thdn, = 0.

For every destinatiom € D, create a global encoding kernel matii;, which we’ll initialize
as the Identity matrix, withR raws and columns. These matrices will contain the coeffisien,
given in (31), and they’ll change as we go from top to bottom.

Add R virtual edges entering the source (with no origin). Neamewértual edgee; write a raw
vector v; which is thei’th vector in the standard basis of the vector spate

Now start going over all nodes by the upstream-to-dowastr order. For every node and for

every edges € O(t), do the following:

« Look at all the vectord; near every edgéc Z(¢). Find a linear combination of these vectors:
fo = Z o 1fi (32)
1€Z(t)

That will satisfy the next condition: for every destinatidre D, if it has a pathr going through
the edgee, then the new matrixG; obtained from the old one by replacing its rawby f,
should be invertible. It can be shown that|#| > |D| then such linear combination can be
found, witha. ; € F,¥(e, ).

« Write the vectorf, near the edge, and replace it with the corresponding raws in the matrices
{Ga}aep, as described above. Note: the vectéfs}.cr are calledglobal encoding kernels,

and they satisfy
zo =fo - (my,....,mg)T (33)

wherez, is the symbol sent at edge

At the end of the process, in order to obtain the transchiggmbols (m,...,mg), every
destinations solves
mi ’ﬁ’Ll
mo N
= (Ga)™! (34)
Mg mg

where{m, ..., mp} are the symbols received at the destination.
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Example 3 (Assigning local encoding kernelsAs an example, we can consider the network given in
Fig. 4. We'll follow the above steps, to findy, .., asg.
1) The capacity of this network is C=2 (you can calculate é,am exercise). Thats also the reason,
why we includedR = 2 packetsmi, mo in the source.
2) Already ordered from top to bottom in Fig.4.
3) There are two edge-disjoint path’'s from source ndde node6, and also to nodé&.
There are no "useless nodes” in this example, so there isngotb "delete”. The paths going from
S=1tod; =6 and tod, = 7 are:
{Pl(l) = (17 2a 6)3 P1(2) = (15 37 47 57 6)}
{P2(1) = (173’7)’P2(2) = (1727475a7)} (35)
4) The edge-vectors are:
T(I,Z) = [172}774(1,3) = [25 1],7”(2’4) = [072}7
T(374) = [270}77'(2,6) = [170]77.(4,5) = [272}7

T(1,2) = [172}77’(5,6) = [2a0],7“(5,7) = [072}

(36)
5) We create the global encoding kernel matrices:
10 10
Gy = ,Ga = (37)
01 01

6) We add the virtual edges with the standard basis vectatewrclose to them.

mq, [1, 0]
ma, [O, 1]

Fig. 6. Sources virtual edges.

7) Let’s go over all nodes, from top to bottom:
Edge(1,2): it's edge-vector is(; ) = [1,2], and therefore, the first raw i¥;, and the second raw

in G4 correspond to the paths that pass through this edge. Theeators are:

f1s=(1,0),f25 =(0,1) (38)
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If we choose

o] = 1,0[2 =1 (39)

Then the new vector

f(172) = alf(l,s) + agf@,s) = (1, 1) (40)
can replace the raws 1 and 2@y and G, respectively, keeping them invertible. So now, we have

11 10
Gl = 7G2 = (41)
01 11

Edge (1,3) It's edge-vector is(; 3) = [2, 1], and therefore, the second raw@h, and the first raw

in G4 correspond to the paths that pass throw this edge. We have

f17s = (1,0),f27S = (O, 1) (42)
If we choose
ag=1,a4 =0 (43)
Then the new vector
f1,3) = asfis + asfa s = (1,0) (44)

can replace the second and the first raw&sin G respectively, by keeping;, and G2 invertible.

The new global encoding kernel matrices will be:

11 10
Gi = Nel (45)
10 11

Edge(2,4): We can of course go as we mentioned before, but in this cheeg is only one input

to the node(2), and therefore only one coefficient. In such cases, we can always choose that
coefficient to be 1, and don’t change the global encodingetematrices. That's also the case with
the edgeg?2,6), (3,4), (3,7).

Edge(4,5): The edge-vector isr; 4y = [2,2] and therefore, the second raw @ and in G

correspond to the paths that pass throw this edge. We have
fi2,4) = (1,1),f(3,4) = (1,0). (46)
We should findag, 19 such that the vector

fla5) = aof(2.4) + a10f(3,4) (47)
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will replace the second raws i1, G2, and keep them invertible. We can take, for instance,
Qg — (19 = 1 (48)

(we're working in theF; field for now), so the new vector that will replace the secoads is:

fa5 =(0,1) (49)
And the transfer matrices will be:
11 10
G = ,Go = (50)
01 01

Now we've almost finished, since in edgés 6), (5,7) we can taken;; = a2 = 1 from the same
considerations as i2, 4).
The destination node$, 7 can now decode the original messages sent by the source, thsiriinal

global encoding matrices:

]V[l ma.e6 M2 ms7
=@t =)t

; (51)
le ms.6 M22 ms7

where M¢ is the reconstruction of messagé; by decoderd.



