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Mathematical methods in communication June 31st, 2010

Lecture 9

Lecturer: Haim Permuter Scribe: Imri Zviely and Itai Lishner

I. M AXIMUM ENTROPY, CHANNEL CODING AND SIDE INFORMATION

In the nature many phenomenons may be explained by the maximum entropy principle. For instance, the

velocity of the particles in the air for a given temperature is distributed according to Gaussian distribution.

The temperature is proportional to the kinetic energy of theparticles. Given a specific temperature, namely,

a mean square constraint on the velocity, we obtain that a Gaussian distribution maximizes the entropy. In

this lecture we would learn how to calculate the maximum entropy, and more important, understand why

this is the case in nature.

Consider the following problem: we would like to maximize the entropyH(X) over p(x) such that the

following constraints will hold

1) p(x) ≥ 0, ∀x ∈ X .

2)
∑

∈X p(x) = 1 .

3)
∑

x∈X p(x)ri(x) = αi, i = (1, ...,m),

whereri(x) are functions ofx. Note that the constraint
∑

x∈X p(x)ri(x) = αi is equivalent toE[ri(X)] =

αi.

Theorem 1The optimal pmfp(x) for the optimization problem given above is

p∗(x) = e
λ0−1+

∑

m

i=1
λiri(x) (1)

whereλi, i = 0, 1, 2, ...,m is the one that satisfies
∑

x

p∗(x) = 1

∑

x

p∗(x)ri(x) = αi. (2)

Q: Is this problem a convex optimization problem ?

A: Yes.

We learned that a convex optimization problem is of the form

min
x

f0(x) (3)

s.t. fi(x) ≤ 0, 1 ≤ i ≤ m , (4)

hj(x) = 0, 1 ≤ j ≤ l (5)
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wherefi, i = 0, 1, 2, ...m are convex functions andhj are affine functions.

In our case we have the problem

max
PX

H(PX) (6)

s.t. PX(x) ≥ 0, ∀x ∈ X , (7)
∑

x∈X

PX(x) = 1, (8)

∑

x∈X

PX(x)ri(x) = αii = (1, ...,m). (9)

Proof of Theorem 1

We solve the optimization problem using the Dual lagrange principle. We first dismiss the constraint

that p(x) ≥ 0, however since we will obtain that the optimal solutionp∗(x) satisfies this condition, then

p∗(x) is optimal also with this constraint.

We form the Lagrange dual functional:

J(p(x), λ) = −
∑

p(x) log(p(x)) + λ0(
∑

p(x)− 1) +
m
∑

i=1

λi(
∑

x

p(x)ri(x)− αi) (10)

And differentiate with respect top(x):

∂J(p(x), λ)

∂p(x)
= − log(p(x))− 1 + λ0 +

m
∑

i=1

λiri(x) = 0 (11)

Hence we obtained that

p(x) = e
λ0−1+

∑

m

i=1
λiri(x) (12)

Now we need to findλ0 andλi, i = 1, 2, ...,m such that

∑

x

p(x) = 1

∑

x

p(x)ri(x) = αi. (13)

For the continuous alphabet where we want to maximize the differential entropy over differential

distributionsf(x) that satisfies the constraintsE[ri(X)] = αi, i = 1, 2, ...,m we obtain

f(x) = e
λ0−1+

∑

m

i=1
λiri(x) (14)

such that
∫

x

f(x)dx = 1 (15)
∫

x

f(x)ri(x)dx = αi. (16)

(17)
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Example 1 (dice)Consider a dice with six faces[1, 2, ...., 6]. What would be the probability of the dice

that maximize the entropy?

p(x) = eλ0−1

∑

x p(x) = 1







⇒ p∗(x) =
1

6
(18)

Note that we obtain thatp(x) does not depend onx, namely is constant. Therefore,a uniform distribution

maximizes the entropy.

Example 2 : X ∈ [−∞,∞] Let the constraints beE[X] = 0 andE[X2] = σ2. Then the form of the

maximizing distribution is

f(x) = eλ0+λ1x+λ2x
2

(19)

To find the appropriate constants, we first recognize that this distribution has the same form as normal

distribution. Hence, the density that satisfies the constraints and also maximizes the entropy is theN (0, σ2)

distribution:

f(x) =
1√
2πσ2

e
− x

2

2σ2 (20)

Alternative proof to Theorem 1 Let PX(x) = eλ0−1+
∑

i=1mλiri(x), and letQX(x) be any distribution

that satisfies the conditionsE[ri(x)] = αi.

We need to show thatH(PX) ≥ H(QX). Consider,

D(Q‖P ) =
∑

x

Q(x)log
Q(x)

P (x)
(21)

=
∑

x

Q(x)log(Q(x))−
∑

x

Q(x)log(P (x)) (22)

= −H(Q)−
∑

x

Q(x)[λ0 − 1 +
m
∑

i=1

λiri(x)] (23)

=

(a) −H(Q)−
∑

x

P (x)[λ0 − 1 +
m
∑

i=1

λiri(x)] (24)

=

(b) −H(Q) +H(P ), (25)

(26)

and sinceD(P ||Q) ≥ 0 we obtained thatH(P ) ≥ H(Q).

Example 3 : Dice x , X = [1, 2, ...., 6]

Suppose that n dice are thrown on the table and we are told thatthe sum of the results isnα. What is

the probability p(x)?
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It is easy to show thatE[x] = α.

We definen1, n2, ..., n6, whenni represents the number of throws wherex = i.

Number of sequences with(n1, n2, ..., n6) is equal to:





n

n1 n2 ... n6



 =
n!

n1! n2! ... n6!
(27)

In order to find the most probable state we wish to maximize n!
n1! n2! ... n6!

under the constraint:

6
∑

i=1

ni

n
· i = α ; E[x] = α (28)

For large values of n using Stirling’s approximation,n! ≈ (n
e
)n, we define that:

N =
n!

n1! n2! ... n6!
≈ (n

e
)n

(n1

e
)n1 ... (n6

e
)n6

(29)

log(N) = nlog(n)− n1log(n1)− ...− n6log(n6) (30)

n = n1 + n2 + ...+ n6 (31)

log(N) = −
∑

i

nilog
ni

n
(32)

N = 2−
∑

i
nilog

ni

n = 2−n
∑

i

ni

n
log

ni

n = 2nH(
n1

n
,
n2

n
,...,

n6

n
) (33)

II. CHANNEL CODING WITH SIDE INFORMATION

Channel coding:

m =
{

1, 2, .., 2nR
}

Encoder
Xn

PY |X

Y n

Decoder
Sn

C = max
p(x)

I(X;Y ) (34)

Fig. 1. Communication system

Channel coding with Side Information:
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m =
{

1, 2..2nR
}

Encoder PY |X Decoder
m̂0(Y

n)

Sn Sn

Fig. 2. Communication system with Side Information

P (yi|xi, si, yi−1) = P (yi|xi, si) (35)

P (yn|xn, sn) =

n
∏

i=1

P (yi|xi, si) (withoutfeedback) (36)

Case I : state information known only to the Decoder:

C = max
p(x)

I(X;Y |S) (a)
= I(X;Y, S) (37)

a) p(s)p(x)p(y|x, s) = p(x, y, s)

We define the problem:

Encoder : f : {1, 2, ..., 2nR} → Xn

Decoder : g : Y n, Sn → {1, 2, ..., 2nR}

Sn ∼ p(s) i.i.d

For memoryless channel:

P (yi, si|xi, yi−1, si−1) = P (si)P (yi|xi, yi−1, si =

= P (si)P (yi|xi, si) = P (yi, si|xi)

Case II : state information known to both Encoder and Decoder:

C = maxp(x|s)I(X;Y |S) (38)
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We define the problem:

Encoder : f : {1, 2, ..., 2nR}xSn → Xn

Decoder : g : Y n, Sn → {1, 2, ..., 2nR}

proof :

C = max
p(x|s)

∑

s

p(s)I(X;Y |S = s) (39)

We will split the message{1, 2, ..., 2nR} : {1, 2, ..., 2nR0} x {1, 2, ..., 2nR1}

R0 = I(X;Y |S = 0) (40)

R1 = I(X;Y |S = 1) (41)

Doing that we split the channel into two separate channels:

m0 =
{

1, 2, .., 2nR0

}

Encoder
Xn (m0)

PY |X,S=0

Y n

Decoder
m̂0(Y

n)

m1 =
{

1, 2, .., 2nR1

}

Encoder
Xn (m1)

PY |X,S=1

Y n

Decoder
m̂1(Y

n)

Fig. 3. Splitted Channel

such that:

R0 = n · p(S = 0)I(X;Y |S = 0)

BlockSize(S = 0) = n · p(S = 0)

R1 = n· (S = 1)I(X;Y |S = 1)

BlockSize(S = 1) = n · p(S = 1)

Calculating the total rate of the channel:

R =
1

n
[np(S = 0)I(X;Y |S = 0) + np(S = 1)I(X;Y |S = 1)]

(a)
= I(X;Y |S) (42)

(a) Law of large numbers
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Converse :

nR = H(M) (43)

(a)
= H(M |Sn)

= H(M |Sn)−H(M |Sn, Y n) +H(M |Sn, Y n)

(b)

≤ I(M ;Y n|Sn) + nǫn

= I(M,Xn(M,Sn);Y n|Sn) + nǫn

= H(Y n|Sn)−H(Y n|Sn, Xn,M) + nǫn

(c)
=

n
∑

i=1

H(Yi|Y i−1, Sn)−H(Yi|Y i−1, Sn, Xn,M) + nǫn

≤
n
∑

i=1

H(Yi|Si)−H(Yi|Si, Xi) + nǫn

=
n
∑

i=1

I(Yi;Xi|Si) + nǫn

≤ [max
p(x|s)

I(Y ;X|S) + ǫn]n

(a) Sn⊥M

(b) Fano inequality

(c) Chain rule


