I. STRONG TYPICALITY SET

We define Weak Typicality set as: (Weak typicality)

\[A_\epsilon^{(n)} = \left\{ x^n \in \mathcal{X}^n : \left| \frac{1}{n} \log P(x^n) - H(X) \right| \leq \epsilon \right\}. \]

(1)

The expression \(N(a|x^n) \) is defined as the number of appearances of symbol \(a \) in the sequence \(x^n \)

Example: \(x^n = 01011110 \Rightarrow N(0|x^n) = 3, N(1|x^n) = 5 \)

Definition 1 (Strong Typicality) A sequence \(x^n \in \mathcal{X}^n \) is said to be \(\epsilon \)-strongly typical with respect to a distribution \(P(x) \) on \(\mathcal{X} \) if:

- For all \(a \in \mathcal{X} \) with \(P_X(a) > 0 \), we have:

\[
\left| \frac{N(a|x^n)}{n} - P_X(a) \right| \leq \frac{\epsilon}{|\mathcal{X}|}
\]

(2)

- For all \(a \in \mathcal{X} \) with \(P_X(a) = 0 \), \(N(a|x^n) = 0 \).

Lemma 1 For \(X \sim i.i.d. \) and the expression: \(\frac{N(a|x^n)}{n} \) if we take \(n \to \infty \) then we get:

\[
\frac{N(a|x^n)}{n} \to P_X(a)
\]

Proof:

\[
N(a|x^n) = \sum_{i=1}^{n} 1_a(x_i)
\]

(3)

\[
1_a(x_i) = \begin{cases}
1 & X_i = a \\
0 & X_i \neq a
\end{cases}
\]

(4)

By the Law of large numbers, for any \(\delta \geq 0 \), \(\epsilon > 0 \) \(\exists n \) s.t

\[
\Pr \left(\left| \frac{N(a|x^n)}{n} - P_X(a) \right| < \epsilon \right) \geq 1 - \delta
\]
Theorem 1 The typical set T_ϵ^n has the following properties
1) If $x^n \in T_\epsilon^{(n)}(x)$ then:
$$H(X) - \epsilon_1 \leq -\frac{1}{n} \log P(x^n) \leq H(X) + \epsilon_1$$
\[(5) \]
2) For all $\delta \geq 0$ exists n sufficiently large s.t $\Pr(x^n \in T_\epsilon^{(n)}(x)) \geq 1 - \delta$
3) $2^{n(H(x) - \epsilon_2)} \leq \left| T_\epsilon^{(n)}(x) \right| \leq 2^{n(H(x) + \epsilon_2)}$

Proof (1):
$$-\frac{1}{n} \log P_X(x^n) \overset{X \sim i.i.d.}{=} -\frac{1}{n} \log \prod_{i=1}^{n} P_X(x^n) = -\frac{1}{n} \sum_{i=1}^{n} \log P_X(x^n) = -\frac{1}{n} \sum_{a \in X} N(a|x^n) \log P_X(x^n)$$

Example 1 For the series $x^n = 001011$ with probabilities: $P(0) = \frac{1}{4}, P(1) = \frac{3}{4}$

$$N(0|x^n) = 4, N(1|x^n) = 3$$

Instead of summing $\log \frac{1}{4} + \log \frac{1}{4} + \log \frac{1}{4} + \log \frac{3}{4} + \log \frac{1}{4}......$

We will multiply the number of zeroes and ones in the corresponding entropy
$$N(0|x^n) \log \frac{1}{4} + N(1|x^n) \log \frac{3}{4} = \left| H(X) - \frac{1}{n} \log P_X(x^n) \right| = \left| \sum_{a \in X} P_X(a) \log P_X(a) - \frac{1}{n} \log P_X(x^n) \right|$$
$$= \left| \sum_{a \in X} (P_X(a) - \frac{N(a|x^n)}{n}) \log P_X(a) \right| \leq \frac{\epsilon}{|X|} \sum_{a \in X} |\log P_X(a)| = \epsilon_1$$

Explanation of (3):

Lets assume that our series is a series with the length of N

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$nE_a(A)$</td>
<td>$nE_b(B)$</td>
<td>$nE_c(C)$</td>
</tr>
</tbody>
</table>

Fig. 1. All possible sequences

$$\left(\frac{n!}{nP_x(a)\ln P_x(b)!nP_x(c)!} \right) = \frac{\log n!}{n \log n}$$
\[
\frac{n \log n - n + \frac{1}{2} \log 2 \Pi n}{n \log n} \xrightarrow{n \to \infty} 1
\]

\[
\# = \frac{n^n}{(nP_x(a))^n P_x(a)(nP_y(b))^n P_y(b)(nP_z(c))^n P_z(c)} = K
\]

K - Number of sequences
\[
\log K = -nP_x(a) \log P_x(a) - nP_y(b) \log P_y(b) - nP_z(c) \log P_z(c) = nH(X)
\]

Definition 2 (Joint Typical Set)

\[
T_{\varepsilon}(n)(X,Y) = \{x^n, y^n : \left| \frac{N(a,b|x^n, y^n)}{n} - P_{XY}(a,b) \right| \leq \frac{\epsilon}{|X||Y|} \} \tag{6}
\]

If \(P_{X,Y}(a,b) = 0, N(a,b|x^n, y^n) = 0 \)

Definition 3 (Conditional strongly typical set)

Let \(y^n \in T_{\varepsilon}(n)(Y) \) then:
\[
T(X|y^n) = \{x^n : (x^n, y^n) \in T_{\varepsilon}(n)(X,Y) \} \tag{7}
\]

\[
|T(X|y^n)| = 2^{nH(X|Y)}
\]

\[
T(Y|x^n) = \{y^n : (y^n, x^n) \in T_{\varepsilon}(n)(X,Y) \} \tag{8}
\]

\[
|T(Y|x^n)| = 2^{nH(Y|X)}
\]

\[
|T_{\varepsilon}(n)(X,Y)| = 2^{nH(Y,X)} |T_{\varepsilon}(n)(X|Y)| = 2^{nH(X|Y)} \tag{9}
\]

Fig. 2. Noisy Typewriter From X to Y
Example 2 We will show that $|T^n_r(Y|X)| = 2^{nH(Y|X)}$

The channel transfer a to d/e according to the channel noise, b to f/g etc.

\[X^n \rightarrow \begin{array}{ccc}
nP_x(A) & nP_x(B) & nP_x(C)
\end{array} \]

\[Y^n \rightarrow \begin{array}{ccc}
D, D, D, E, E, E \ldots & F, F, F, G, G, G \ldots & H, H, H, I, I, I \ldots \\
nP_{X,Y}(a, d) & nP_{X,Y}(b, f) & nP_{X,Y}(b, g) & nP_{X,Y}(c, h) & nP_{X,Y}(c, i)
\end{array} \]

Fig. 3. Example 2

The amount of series for all inputs:

\[|T^n_r(Y|X)| = \left(\frac{nP_x(a)}{nP_{X,Y}(a, d)nP_{X,Y}(a, e)}\right)\left(\frac{nP_x(b)}{nP_{X,Y}(b, f)nP_{X,Y}(b, g)}\right)\left(\frac{nP_x(c)}{nP_{X,Y}(c, h)nP_{X,Y}(c, i)}\right)\]

Let's use the approximation: $n! \approx n^n$ and operate log, and each binom will be:

\[-H(X) + H(Y, X) = H(Y|X)\]

Applying it to the whole expression we will get: $|T^n_r(Y|X)| = 2^{nH(Y|X)}$ ■
II. RATE DISTORTION

![Diagram of communication system](image)

Definition 4 (Distortion function) A distortion function or distortion measure is a mapping

\[d: \mathcal{X} \times \hat{\mathcal{X}} \rightarrow \mathbb{R}^+ \]

(10)

from the set of source alphabet-reproduction alphabet pairs into the set of nonnegative real numbers. The distortion \(d(x, \hat{x}) \) is a measure of the cost of representing the symbol \(x \) by the symbol \(\hat{x} \).

Definition 5 (Distortion Bound) A distortion measure is said to be bounded if the maximum value of the distortion is finite:

\[d_{\text{max}} \overset{\text{def}}{=} \max_{x \in \mathcal{X}, \hat{x} \in \hat{\mathcal{X}}} d(x, \hat{x}) < \infty \]

(11)

In most cases, the reproduction alphabet \(\hat{\mathcal{X}} \) is the same as the source alphabet \(\mathcal{X} \).

Example 3 Examples of common distortion function are:

\[d(X_i, \hat{X}_i) = X_i \oplus \hat{X}_i - \text{Hamming Distance} \]

\[d(X_i, \hat{X}_i) = (X_i - \hat{X}_i)^2 - \text{Mean Square Error} \]

Definition 6 (Distortion between sequences) The distortion between sequences \(x^n \) and \(\hat{x}^n \) is defined by:

\[D(X^n, \hat{X}^n) = \frac{1}{n} \sum_{i=1}^{n} d(X_i, \hat{X}_i) \]

(12)

So the distortion for a sequence is the average of the per symbol distortion of the elements of the sequence.

Definition 7 ((2^{nR}, n)-rate distortion code)

A \((2^{nR}, n)\)-rate distortion code consists of:

Encoder: \(f(X^n) : X^n \rightarrow (1, 2, 3, \ldots, 2^{nR}) \)

Decoder: \(g(f(X^n)) : X^n \rightarrow (1, 2, 3, \ldots, 2^{nR}) \)

The distortion associated with the \((2^{nR}, n)\) code is defined as

\[\hat{D}(X^n, \hat{X}^n) = \frac{1}{n} \sum_{i=1}^{n} d(X_i, \hat{X}_i) \]
Definition 8 (Achivable Rate)

A rate distortion pair \((R, D)\) is achivable if \(\exists\) a sequence of \((n, 2^{nR})\) codes s.t: \(\lim_{n \to \infty} D(X^n, \hat{X}^n) \leq D\)

\[
R(D)^{(I)} = \min_{P(\hat{x}|x): E(d(x, \hat{x})) \leq D} I(X; \hat{X})
\]

Where the minimization is over all conditional distributions \(P(\hat{x}|x)\) for which the joint distribution \(P(x|\hat{x}) = P(x)P(\hat{x}|x)\) satisfies the expected distortion constrained.

Definition 9 (Rate Distortion lower bound)

The rate distortion function \(R(D)\) is the infimum of all \(R\) that are achievable with Distortion \(D\)

Definition 10 (Distortion Rate lower bound)

The distortion rate function \(D(R)\) is the infimum of all distortion \(D\) such that \((R, D)\) is in the rate distortion region of the source for a given rate \(R\).

Theorem 2 The rate distortion function for an i.i.d. source \(X\) with distribution \(p(x)\) and bounded distortion function \(d(x, \hat{x})\) is equal to the associated rate distortion function. Thus,

\[
R(D) = R(D)^{(I)} = \min_{P(\hat{x}|x): \sum(x, \hat{x})P(x)P(\hat{x}|x)d(x, \hat{x}) \leq D} I(X; \hat{X})
\]

\[\text{(13)}\]

A. CALCULATION OF THE RATE DISTORTION FUNCTION

1) Binary Source:

Theorem 3 (The rate distortion function for a Bernoulli(p) source with Hamming distortion)

- \(X \sim \text{Ber}(p)\), \(p \leq \frac{1}{2}\), \(D \leq \frac{1}{2}\)
- \(d(X_i, \hat{X}_i) = X_i \oplus \hat{X}_i\)
- \(R(D) = ?\)

Proof

\[
R(D) = \begin{cases}
H_b(p) - H(D) & p > D \\
0 & p < D
\end{cases}
\]

If \(D = 0\) \(X_i = \hat{X}_i \Rightarrow R = H_b(p)\)

\[
I(X; \hat{X}) = H(X) - H(X|\hat{X}) \\
= H(X) - H(X \oplus \hat{X}_i|\hat{X}_i) \\
\geq H(X) - H(X \oplus \hat{X}_i) \\
H_b(p) - H_b(D)
\]
We demand: \(E[d(X_i, \hat{X}_i)] \leq D \), \(P_r[X_i \oplus \hat{X}_i = 1] \leq D \)

We will achieve it with:

\[
X \sim \text{Ber}(p), \; X = \hat{X} \oplus Z, \; Z \sim \text{Ber}(p), \; Z \perp \hat{X}
\]

\[
I(X; \hat{X}) = H(X) - H(X|\hat{X}) = H(X) - H(X \oplus \hat{X}|\hat{X}) \geq H(X) - H(Z) = H_b(p) - H_b(D)
\]

Fig. 5. Rate distortion function for a Bernoulli \((\frac{1}{2})\) source.

Theorem 4 (The rate distortion function for a \(\mathcal{N}(0, \sigma^2)\) source with squared-error distortion)

\[
R(D) = \begin{cases}
\frac{1}{2} \log \frac{\sigma^2}{D} & 0 \leq D \leq \sigma^2 \\
0 & D \geq \sigma^2
\end{cases}
\]

Proof: Let \(X \) be \(\sim \mathcal{N}(0, \sigma^2) \). By the rate distortion theorem extended to continuous alphabets, we have

\[
R(D) = \min_{f(\hat{x} | x): E[(X - \hat{X})^2] \leq D} I(X; \hat{X}). \tag{14}
\]

First we should find the lower bound for the rate distortion function and prove that this is achievable.

\[
I(X; \hat{X}) = h(X) - h(X|\hat{X}) = \frac{1}{2} \log(2\pi\epsilon)\sigma^2 - h(X - \hat{X}|\hat{X}) \geq \frac{1}{2} \log(2\pi\epsilon)\sigma^2 - h(X - \hat{X}) \geq \frac{1}{2} \log(2\pi\epsilon)\sigma^2 - h(\mathcal{N}(0, E(X - \hat{X})^2)) = \frac{1}{2} \log(2\pi\epsilon)\sigma^2 - \frac{1}{2} \log(2\pi\epsilon)E(X - \hat{X})^2
\]
\[
\begin{align*}
\geq & \quad \frac{1}{2} \log(2\pi e)\sigma^2 - \frac{1}{2} \log(2\pi e)D \\
= & \quad \frac{1}{2} \log \frac{\sigma^2}{D}
\end{align*}
\]

Conclusion:

\[
R(D) \geq \frac{1}{2} \log \frac{\sigma^2}{D}
\] (15)

If \(D \leq \sigma^2 \) we choose

\[
X = \hat{X} + Z, \hat{X} \sim \mathcal{N}(0, \sigma^2 - D), Z \sim \mathcal{N}(0, D)
\]

where \(\hat{X} \) and \(Z \) are independent. For this joint distribution, we calculate

\[
I(X; \hat{X}) = \frac{1}{2} \log \frac{\sigma^2}{D}
\] (16)

and \(E(X - \hat{X})^2 = D \), thus achieving the bound. If \(D > \sigma^2 \), we choose \(\hat{X} = 0 \) with probability 1, achieving \(R(D) = 0 \). Hence, the rate distortion function for the Gaussian source with squared-error distortion is

\[
R(D) = \begin{cases}
\frac{1}{2} \log \frac{\sigma^2}{D} & 0 \leq D \leq \sigma^2 \\
0 & D \geq \sigma^2
\end{cases}
\]

We can rewrite \(R(D) \) as \(D(R) : D(R) = \sigma^2 2^{-2R} \).

Fig. 6. Rate distortion function for a Gaussian source.