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Mathematical methods in communication June 16th, 2009

Lecture 8

Lecturer: Haim Permuter Scribe: Roni Winik and Itzhak Tamo

I. GAUSSIAN CHANNEL CODING

We consider the following channel coding problem:

M =
{
1, 2, .., 2nR

}

Encoder
Xn (m)

PY |X

Y n

Decoder
M̂(Y n)

Pe = Pr(M̂ 6= M)

Pmax = max
i

Pr(M̂ 6= M |m = i)

Fig. 1. Communication system

For finite alphabet we saw that C = max
PX

I(X ; Y ) . We now consider the Gaussian

channel as an example of a continuous alphabet, where Zi is a Gaussian white noise and

Fig. 2. Gaussian channel where Yi = Xi + Zi, and Xi is the input of the channel at time i, Yi is the output of the

channel at time i, and Zi is a Gaussian noise, i.i.d. with variance σ
2

z .

is independent of the input Xi. If there is no constraint on the input, one can transmit
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an unlimited amount of information in one usage of the channel by using a large input.

However, in reality we have a power constraint on the input, i.e., 1
n
E[
∑n

i=1X
2
i ] ≤ P .

Note that Let us define a code for the Gaussian channel:

Definition 1 (A code for the Gaussian channel with a power limit constraint)

An (2nR, n) code for the Gaussian channel with power constraint P consists of the

following:

1) An index set {1, 2, ..., 2nR}

2) An encoder function

f : {1, 2, ..., 2nR} 7→ X n, (1)

that satisfies the power constraint for each message, i.e.,

1

n

n∑

i=1

x2
i (m) ≤ P, ∀m ∈ {1, 2, ..., 2nR}. (2)

3) A decoding function

g : Yn 7→ {1, 2, ..., 2nR}, (3)

Definition 2 (Achievable rate) The rate R is said to be achievable for a Gaussian

channel with a power constraint P , if there exists a sequence of (2nR, n) codes with

codewords satisfying the power constraint such that the maximal probability of error,

Pmax, tends to zero.

Definition 3 (Capacity of a channel) The capacity of the channel, denoted as C, is the

supremum of all achievable rates.

We will show that for continuous alphabet with power constraint P ,

C = CI (4)

where

CI = max
fX :E[X2]≤P

I(X ; Y ). (5)

Theorem 1 (Capacity of continues alphabet channel with power constraint) If

PY |X is a continuous alphabet channel with power constraint P , then C = CI .
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The proof follows the similar steps as the case of finite alphabet. The converse uses

Fano’s inequality, and the achievability uses a random codes argument, joint typicality

decoder, and the following lemma

Lemma 1 (Upper bound on the probability of two independent sequences to be jointly typical )

Consider a joint pdf fX,Y . Let Xn be in the typical set, i.e., Xn ∈ Aǫ(X), where

An
ǫ =

{

Xn :

∣
∣
∣
∣
∣
−
1

n
log2

n∏

i=1

fX(xi)− h(x)

∣
∣
∣
∣
∣
≤ ǫ

}

. (6)

Let Y n be drawn i.i.d. according to the pdf fY . Then

Pr{(Xn, Y n) ∈ A(n)
ǫ (X, Y )} ≤ 2−n(I(X;Y )+ǫ). (7)

II. PROOF FOR THEOREM 1

Proof: Achivability: In the achievability proof, we show that if R < CI , then R

is an achievable rate. Let R < CI , we will see that there exists a sequence of (2nR, n)

codes, such that maximal probability of error Pmax tends to zero . Meaning that R is an

achievable rate.

Encoder: Let fX be a pdf that satisfies the power constraint E(X2) ≤ P . We generate

the codebook with each element chosen i.i.d ∼ fX . Thus, Xi(m), i = 1, 2, ..., n,m =

1, 2, ..., 2nR . Forming codewords Xn(1), Xn(2), ..., Xn(2nR).

Decoder: The decoder looks at the list of the codewords and searches for one that

is jointly typical with the received vector Y n. If there is only one such codeword the

decoder declares it to be the transmitted codeword. Otherwise the decoder declares an

error. The decoder also declares an error if chosen codeword does not satisfy the power

constraint.

Probability of error: without loss of generality, assume that codeword m = 1 was

sent. Thus, Y n = Xn(1) + Zn. The decoder declares an error if one of the following

events occur:

1) The power constraint is violated

E0 =

{

1

n

n∑

i=1

X2
i (1) > P

}

(8)
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2) The received codeword ,Y n, and the transmitted codeword ,Xn(1), are not jointly

typical.

Ec
1 = {(Xn(1), Y n) /∈ A(n)

ǫ } (9)

3) There exits Xn(i), i 6= 1, such that (Xn(i), Y n) are jointly typical

Ei = {(Xn(i), Y n) ∈ A(n)
ǫ }, i = 2, 3, ..., 2nR (10)

We can see that:

1) By the law of large numbers we know that 1
n

∑n

i=1X
2
i (1) → P , therefore P (E0) →

0 as n → ∞.

2) By the joint AEP Theorem of the last lecture we know that P ((Xn(1), Y n) ∈

A
(n)
ǫ ) → 1 as n → ∞ therefore P (Ec

1) → 0.

3) For i 6= 1, Xn(i) and Y n are independent, therefore again by Lemma 1

P ((Xn(i), Y n) ∈ A
(n)
ǫ ) ≤ 2−n(I(X;Y )−3ǫ).

Then

P (n)
e = P (M̂ 6= M |M = 1) (11)

= P (E0 ∪ Ec
1 ∪

2nR

i=2 Ei) (12)

(a)

≤ P (E0) + P (Ec
1) +

2nR

∑

i=2

P (Ei) (13)

≤ ǫ+ ǫ+

2nR

∑

i=2

2−n(I(X;Y )−3ǫ) (14)

(b)

≤ 2ǫ+ 23nǫ2−n(I(X;Y )−R) ≤ 3ǫ (15)

Where:

(a) Only one error can occur at the same time.

(b) For n sufficiently large R < I(X ; Y )− 3ǫ.

Thus, P
(n)
e tends to zero. As in the discrete case, deleting the worst half of the codewords

(those with most probable error) results in arbitrarily low maximal error probability, Pmax.

In particular the power constraint is satisfied by each of the remaining codewords since
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these codewords have probability of error 1, and must belong to the worst half of the

codewords. Hence R is an achievable rate therefore CI ≤ C.

Converse: Now we will show that if R is an achievable rate then R < CI . In

the discrete case which holds also for the continuous one, we obtained , nR ≤
∑n

i=1 I(Xi; Yi) + nǫn. Where ǫn = 1
n
+RP

(n)
e .

Let Pi be the average power of the ith coordinate of the codebook, i.e. Pi =

1
2nR

∑2nR

m=1X
2
i (m). Since each of the codeword satisfies the power constraint so does

their average, and hence

1

n

n∑

i=1

Pi =
1

n

n∑

i=1

∫

x

fXi
(x)x2dx (16)

=

∫

x

1

n

n∑

i=1

fxi
(x)

︸ ︷︷ ︸

f̄
X̄

x2dx ≤ P (17)

Therefore f̄X is a pdf which satisfies the power constraint. Lets define the notation

I(fX ; fY |X) , I(X ; Y ). Thus,

R
(a)

≤
1

n

n∑

i=1

I(Xi; Yi) + ǫn (18)

=
1

n

n∑

i=1

I(fXi
; fYi|Xi

) + ǫn (19)

(b)

≤ I(
1

n

n∑

i=1

fXi
; fY |X̄) + ǫn (20)

= I(f̄X̄ ; fY |X̄) + ǫn (21)

where:

(a) Using Fano’s inequality, similarly, to the discrete case.

(b) Using Jensen inequality and the fact that I(fX ; fY |X) is concave in fX .

Since, ǫn → 0, therefore, R ≤ I(f̄X ; fY |X). Since C is the supremum of all achievable

rates, we get C ≤ CI . And that completes the proof.
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III. PARALLEL GAUSSIAN CHANNELS AND CONVEX OPTIMIZATION

A. Parallel Gaussian channels

We saw in the last lecture that for a Gaussian channel with power constraint,E[X2] ≤ P

and Z ∼ N (0, N) we get that

C = max
f(x),E(x2)≤P

I(X ; Y ) =
1

2
log(1 +

P

N
). (22)

In this section we consider k independent Gaussian channels in parallel with common

power constraint. where Z1, Z2, ..., Zk Gaussian white noise and are independent. This is

Fig. 3. Parallel Gaussian channels.

a very usefull model where each sub-channel might model a different frequency, different

state on a different time slot, or different link that is available.

Our goal is to maximize the capacity of the channel subject to the power constraint.

Since the channel is memoryless with the input X1, X2, ...Xk and the output Y1, Y2, ...Yk

the capacity of the channel is

C = max
f(x1,x2,...,xk),E[

∑
k

i=1
x2]≤P

I(X1, X2, ..., Xk; Y1, Y2, ..., Yk) (23)
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Furthermore, since Z1, Z2, ..., Zk are independent, we get that:

I(X1, X2, ..., Xk; Y1, Y2, ..., Yk) = h(Y1, Y2, ..., Yk)− h(Y1, Y2, ..., Yk|X1, X2, ..., Xk)

(a)
= h(Y1, Y2, ..., Yk)− h(Z1, Z2, ..., Zk|X1, X2, ..., Xk)

(b)
= h(Y1, Y2, ..., Yk)− h(Z1, Z2, ..., Zk)

(c)
= h(Y1, Y2, ..., Yk)−

k∑

i=1

h(Zi)

≤
k∑

i=1

h(Yi)−
k∑

i=1

h(Zi)

(d)

≤
k∑

i=1

1

2
log(1 +

Pi

Ni

). (24)

Where:

(a) follows from the definition of the additive channel

(b) follows form the fact that noise Z is independent of the inputs Xi.

(c) follows from the fact that Zi is independent of Zj for any i 6= j.

(d) follows from the upper bound on differential entropy for a given variance Pi.

Thus C ≤
∑

i
1
2
log(1 + Pi

Ni
) and equality is achieved1 if

(X1, X2, ..., Xk) ∼ N










0,










P1 0 · · · 0

0 P2 · · · 0
...

...
. . .

...

0 0 · · · Pk



















. (25)

In other words, to maximize C the input (X1, X2, ..., Xk) should be independent, and

for each 1 ≤ i ≤ k Xi ∼ N (0, Pi). Now our problem is reduced to finding the power

distribution between the channels, i.e., P1, P2, ..., Pk. This optimization problem can be

written as follows:

min
x

−
k∑

i=1

1

2
log(1 +

Pi

Ni

)

s.t. −Pi(x) ≤ 0, 1 ≤ i ≤ m

1Please verify as an exercise that indeed all inequalities in (24) become equalities under this input definition.
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k∑

i=1

= P, 1 ≤ j ≤ l (26)

We will now use a special tool of convex optimization problems called the Karush

Kuhn Tucker conditions (KKT) to solve it.

B. Convex Optimization

In this subsection we use a convex optimization tool called KKT condition to solve a

specific optimization problem. We first give some background on this tool.

Consider the problem of minimizing f0(x) subject to the constraints that fi(x) ≤ 0, 1 ≤

i ≤ m (m inequality constraints) and hj(x) = 0, 1 ≤ j ≤ l (l equality constraints).

In a formal mathematical notation, the problem may be written as

min
x

f0(x)

s.t. fi(x) ≤ 0, 1 ≤ i ≤ m

hj(x) = 0, 1 ≤ j ≤ l (27)

We now introduce the formal definition of a convex optimization problem.

Definition 4 (Convex optimization problem) If f0(x), fi(x), 1 ≤ i ≤ m are convex

functions and hj(x) = 0, 1 ≤ j ≤ l are affine functions, i.e., hj(x) = Ajx+ b, then the

problem is called a convex optimization problem.

We now introduce a dual problem and give sufficient and necessary conditions for a

solution to be optimal for a convex optimization problem.

Definition 5 (Dual Function) The Dual Function, L(X, λ, ν) : ℜn × ℜm × ℜl → ℜ

L(X, λ, ν) = f0(x) +
m∑

i=1

λifi(x) +
l∑

i=1

νihi(x). (28)

Where

λi- Lagrange multiplier (for the inequalities)

νi- Lagrange multiplier (for the equalities).
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The necessary conditions for a vector x̃ to be a local minimum are the KKT conditions

which is given below.

Definition 6 ( KKT conditions) There exist constants λi, 1 ≤ i ≤ m and νj , 1 ≤ j ≤ l

such that

1) ∇xL(x̃, λ, ν) = 0

2) fi(x̃) ≤ 0, 1 ≤ i ≤ m

3) hj(x̃) = 0, 1 ≤ j ≤ l

4) λifi(x̃) = 0, 1 ≤ i ≤ m

5) λi ≥ 0,

where ∇xL(x̃, λ, ν) is the derivative with respect to x and if x is vector that its the partial

derivative with respect to each element in x.

In general KKT condition are necessary condition for having a local minimum. For

a convex optimization problem they are necessary and sufficient for having a global

minimum.

Theorem 2 (Sufficient and necessary condition for a convex optimization problem)

In the special case (which is also our case) where f0(x) and fi(x) are convex functions

and hj(x) are affine functions i.e. hj(x) = Ajx + b , namely, the optimization problem

is a convex optimization problem, the KKT conditions are sufficient and the vector x̃ is

the global minimum.

C. Waterfilling

Now get back our optimization problem. We would like to find the global minimum

of the function

f0(P1, ..., Pk) = −
∑

i

1

2
log(1 +

Pi

Ni

). (29)

Such that

fi(P1, ..., Pk) = −Pi ≤ 0. (30)
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And

h(P1, ..., Pk) =
∑

i

Pi − P = 0 (31)

writing the functional

L(P1, ..., Pk) = −
∑ 1

2
log(1 +

Pi

Ni

)−
∑

i

λiPi + ν(
∑

j

Pj − P ). (32)

Differentiating with respect to Pi yields

∂

∂Pi

L = −
Ni

Ni + Pi

1

Ni

− λi + ν = 0. (33)

Thus

Pi +Ni =
1

ν − λi

. (34)

If Pi > 0 then by 5th KKT condition we get that λi = 0 and thus Pi =
1
ν
−Ni. However

by the 2nd KKT condition, Pi ≥ 0 ,therefore Pi = [ 1
ν
−Ni]

+ = max(0, 1
ν
−Ni).

Note that if Pi = 0 then λi 6= 0.

The solution is illustrated graphically in following figure:

Fig. 4. Water-filling for parallel.

The vertical levels indicate the noise levels in the various channels. As signal power

is increased from zero, we distribute the power to the channels with the lowest noise.

When the available power is increased still further, some of the power is put into noisier

channels. The process by which the power is distributed among the various bins is
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identical to the way in which water distributes itself in a vessel. Hence this process

is referred to as ’water filling’.


