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Seperation of source and channel coding

The source coding depiction can be considered as in fig 1,
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Fig. 1. Source Coding

In the source coding problem we showed that ifH(S) ≤ R thenR is an achievable

rate, meaning there exists a sequence of codes such thatPr(Sn 6= Ŝn)
n→∞
−→ 0. SinceR

is the compression ration, measured in bits per symbol, we would like it to be as small

as possible.R cannot be smaller thanH(S) (See lecture 5).

For a channel coding depiction consider the following figure,
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Fig. 2. Channel Coding

Here,R represents the number of bits each symbol represents, and therefore we would

like it to be as big as possible. For the channel, a rateR is achievable if there exists a

sequence of codes(2nR, n) such thatPr(M 6= M̂)
n→∞
−→ 0.

Now let us consider the problem of a joint source-channel problem as seen in fig 3.

What would be the optimal source code and channel code given a specific channel? In

other words, what would be the sequence of codes which achieves an arbitrarily small

probability of error, using the least amount of symbols?



2

 

     

 

Sn

Encoder
Xn

PY |X
Y n

Decoder
Ŝn
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Fig. 3. Joint source-channel Coding
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Fig. 4. Source-channel seperation scheme

A possible solution is a source-channel seperation scheme as follows,

In this scheme, the channel coding does not take into accountthe source coding.

The solution scheme must maintain both the channel- and source-coding constraints, i.e

• Pr(M 6= M̂) −→ 0 for R < C

• Pr(Sn 6= Ŝn) −→ 0 for H(S) < R

whereR is the bit rate and

C = max
PX

I(X;Y ) (1)

is the Capacity of the channel.

Therefore any valid source-channel coding scheme must maintain,

H(S) < C ⇒ Pr(Sn 6= Ŝn) −→ 0 (2)

Notice that the probability of error for each individual message goes to zero since the

maximum probablity of error over all messages goes to zero.

Theorem 1 (A source-channel seperation is optimal) If H(S) > C then one cannot

transmitSn lossless through the channel, and ifH(S) ≤ C one can use the source-

channel seperation scheme.
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Proof:

For our purpose, let us consider only discrete memoryless channels (A more general

proof exists).

For a memoryless channel,

P (Yi|Y
i−1, X i) = P (Yi|X

i) (3)

We will prove that ifPr(Sn 6= Ŝn)
n→∞
−→ 0 thenH(S) < C,

nH(S)
(a)
= H(Sn)

= H(Sn)−H(Sn|Y n) +H(Sn|Y n)

= I(Sn;Y n) +H(Sn|Y n) (4)

Where

(a) follows fromSn ∼ PS i.i.d

Assume a code that achievesPr(Sn 6= Ŝn) = Pǫ −→ 0 exists.

Using Fano’s inequality:

nH(S) ≤ I(Sn;Y n) + (1 + nPǫ log |S|) (5)

H(S) ≤
1

n
I(Sn;Y n) + ǫn (6)

where

ǫn =
1

n
+ Pǫ log |S|

Pǫ→0
−→ 0 (7)

Now, sinceSn −Xn − Y n form a markov chain, by the Data Processing inequality we

get

I(Sn;Y n) ≤ I(Xn;Y n)

= H(Y n)−H(Y n|Xn)

(a)
=

n∑

i=1

[H(Yi|Y
i−1)−H(Yi|Xi)]

(b)

≤

n∑

i=1

[H(Yi)−H(Yi|Xi)]
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=
n∑

i=1

I(Xi;Yi)

(c)

≤ nC (8)

Where

(a) follows from the definition of a memoryless channel,

(b) conditioning reduces entropy

(c) follows from the definition of Capacity (1) andXi, Yi being i.i.d

So if there exists a code for which the probability for an error goes to zero then

H(S) ≤
1

n
I(Sn;Y n) + ǫn

≤ C + ǫn (9)

With ǫn arbitrarily small


