Seperation of source and channel coding

The source coding depiction can be considered as in fig 1,
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Fig. 1. Source Coding

In the source coding problem we showed thatfifS) < R then R is an achievable
rate, meaning there exists a sequence of codes suctPthiat # 5”) =% 0. SinceR
is the compression ration, measured in bits per symbol, wadwuike it to be as small
as possibleR cannot be smaller thaf (S) (See lecture 5).

For a channel coding depiction consider the following figure
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Fig. 2. Channel Coding

Here, R represents the number of bits each symbol represents, arefdre we would
like it to be as big as possible. For the channel, a rats achievable if there exists a
sequence of code@"%, n) such thatPr(M # M)

Now let us consider the problem of a joint source-channeblpra as seen in fig 3.
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What would be the optimal source code and channel code givgedifis channel? In
other words, what would be the sequence of codes which ahiam arbitrarily small

probability of error, using the least amount of symbols?
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Fig. 3. Joint source-channel Coding
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Fig. 4. Source-channel seperation scheme

A possible solution is a source-channel seperation schenfiellaws,
In this scheme, the channel coding does not take into acdbergource coding.
The solution scheme must maintain both the channel- andceaading constraints, i.e
« Pr(M+#M)—0for R<C
e Pr(Sm+#5S") — 0 for H(S) < R
where R is the bit rate and
C=max[(X;Y) 1)

Px
is the Capacity of the channel.

Therefore any valid source-channel coding scheme musttaiajin

H(S) < C = Pr(S"# S") — 0 (2)
Notice that the probability of error for each individual reage goes to zero since the
maximum probablity of error over all messages goes to zero.

Theorem 1 (A source-channel seperation is optimal) If H(S) > C then one cannot
transmit S™ lossless through the channel, andHf(S) < C one can use the source-

channel seperation scheme.



Proof:

For our purpose, let us consider only discrete memorylessirgtls (A more general

proof exists).

For a memoryless channel,
P(Yi|Y'™, X') = P(Yi|X")

We will prove that if Pr(S™ # S*) "=% 0 then H(S) < C,

—
S
=

nH(S) @ H(S™)

H(S") — H(S"|Y")+ H(S"|Y")

I(S™Y")+ H(S"|Y")
Where
(a) follows fromS™ ~ Pg i.i.d
Assume a code that achiev&s (5" # Sm) = P, —s ( exists.
Using Fano’s inequality:

nH(S) <I(S™;Y")+ (1+nP.logl|S|)

H(S) < 21(S™ V") + e
n

where

P.—0

1
€n = —+ P.log|S| — 0
n

3)

(4)

(5)
(6)

(7)

Now, sinceS™ — X" — Y™ form a markov chain, by the Data Processing inequality we

get
Is™yn™ < I(X™Yy"™)

= H(Y") - H(Y"|X")
& Z[H(myi—l)—H(mXi)]
C S (H) - B

=1



< nC (8)

Where

(a) follows from the definition of a memoryless channel,
(b) conditioning reduces entropy

(c) follows from the definition of Capacity (1) and;, Y; being i.i.d

So if there exists a code for which the probability for an egoes to zero then

H(S)
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With ¢, arbitrarily small [ |



