Seperation of source and channel coding

The source coding depiction can be considered as in fig 1,

\[S^n \xrightarrow{nR} \text{Encoder} \xrightarrow{nR} \hat{S}^n \]

Fig. 1. Source Coding

In the source coding problem we showed that if \(H(S) \leq R \) then \(R \) is an achievable rate, meaning there exists a sequence of codes such that \(Pr(S^n \neq \hat{S}^n) \xrightarrow{n \to \infty} 0 \). Since \(R \) is the compression ration, measured in bits per symbol, we would like it to be as small as possible. \(R \) cannot be smaller than \(H(S) \) (See lecture 5).

For a channel coding depiction consider the following figure,

\[X^n \xrightarrow{P_{Y|X}} Y^n \xrightarrow{nR} \text{Decoder} \]

Fig. 2. Channel Coding

Here, \(R \) represents the number of bits each symbol represents, and therefore we would like it to be as big as possible. For the channel, a rate \(\hat{R} \) is achievable if there exists a sequence of codes \((2^{nR}, n)\) such that \(Pr(M \neq \hat{M}) \xrightarrow{n \to \infty} 0 \).

Now let us consider the problem of a joint source-channel problem as seen in fig 3. What would be the optimal source code and channel code given a specific channel? In other words, what would be the sequence of codes which achieves an arbitrarily small probability of error, using the least amount of symbols?
A possible solution is a source-channel separation scheme as follows.
In this scheme, the channel coding does not take into account the source coding.

The solution scheme must maintain both the channel- and source-coding constraints, i.e

- \(\Pr(M \neq \hat{M}) \rightarrow 0 \) for \(R < C \)
- \(\Pr(S^n \neq \hat{S}^n) \rightarrow 0 \) for \(H(S) < R \)

where \(R \) is the bit rate and

\[
C = \max_{P_X} I(X; Y) \tag{1}
\]

is the Capacity of the channel.

Therefore any valid source-channel coding scheme must maintain,

\[
H(S) < C \Rightarrow \Pr(S^n \neq \hat{S}^n) \rightarrow 0 \tag{2}
\]

Notice that the probability of error for each individual message goes to zero since the maximum probability of error over all messages goes to zero.

Theorem 1 (A source-channel separation is optimal) If \(H(S) > C \) then one cannot transmit \(S^n \) lossless through the channel, and if \(H(S) \leq C \) one can use the source-channel separation scheme.
Proof:

For our purpose, let us consider only discrete memoryless channels (A more general proof exists).

For a memoryless channel,

\[P(Y_i|Y^{i-1}, X^i) = P(Y_i|X^i) \] \hspace{1cm} (3)

We will prove that if \(Pr(S^n \neq \hat{S}^n) \xrightarrow{n \to \infty} 0 \) then \(H(S) < C \),

\[
\begin{align*}
nH(S) & \stackrel{(a)}{=} H(S^n) \\
& = H(S^n) - H(S^n|Y^n) + H(S^n|Y^n) \\
& = I(S^n; Y^n) + H(S^n|Y^n) \hspace{1cm} (4)
\end{align*}
\]

Where

(a) follows from \(S^n \sim P_S \) i.i.d

Assume a code that achieves \(Pr(S^n \neq \hat{S}^n) = P_\epsilon \xrightarrow{} 0 \) exists.

Using Fano’s inequality:

\[
\begin{align*}
nH(S) & \leq I(S^n; Y^n) + (1 + nP_\epsilon \log |S|) \\
H(S) & \leq \frac{1}{n} I(S^n; Y^n) + \epsilon_n \hspace{1cm} (5)
\end{align*}
\]

where

\[
\epsilon_n = \frac{1}{n} + P_\epsilon \log |S| \xrightarrow{P_\epsilon \to 0} 0 \hspace{1cm} (6)
\]

Now, since \(S^n - X^n - Y^n \) form a markov chain, by the Data Processing inequality we get

\[
\begin{align*}
I(S^n; Y^n) & \leq I(X^n; Y^n) \\
& = H(Y^n) - H(Y^n|X^n) \\
& \stackrel{(a)}{=} \sum_{i=1}^{n} [H(Y_i|Y^{i-1}) - H(Y_i|X_i)] \\
& \leq \sum_{i=1}^{n} [H(Y_i) - H(Y_i|X_i)]
\end{align*}
\]
\[= \sum_{i=1}^{n} I(X_i; Y_i) \]
\[\leq nC \quad (c) \]

Where

(a) follows from the definition of a memoryless channel,

(b) conditioning reduces entropy

(c) follows from the definition of Capacity (1) and \(X_i, Y_i \) being i.i.d.

So if there exists a code for which the probability for an error goes to zero then

\[H(S) \leq \frac{1}{n} I(S^n; Y^n) + \epsilon_n \]
\[\leq C + \epsilon_n \quad (9) \]

With \(\epsilon_n \) arbitrarily small.