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Introduction to Information Theory

Lecture 6

Lecturer: Haim Permuter Scribe: Yoav Eisenberg and Yakov Miron

I. CHANNEL CODING

We consider the following channel coding problem given in Fig. 1. This is a

fundamental problem in digital communication and storage of sending a message (set

of bits) through a noisy channel.

m =
{

1, 2, .., 2nR
}

Encoder
Xn (m)

PY |X

Y n

Decoder
m̂(Y n)

Fig. 1. Channel coding setting.

Prior to Shannon results, it was assumed that the error probability of the channel

communication in Fig. 1, grows as R grows, where R is the rate transmitted through the

channel, i.e., the number of bits transmitted through the channel per one usage of the

channel.

According to Shannon theorem, as long as we allow a delay such that the encoding is

done in blocks of size n, the error probability is arbitrary low for R ≤ C and is 1 for

R > C, where C is the channel capacity. This is illustrated in Fig. 2.

Assumption 1 (Discrete time) The transmission via the channel happens at discrete

time, i.e., 1,2,3,4,5,.... .

Assumption 2 (Memoryless property) The channel is memoryless , i.e.,

P
(

yi|y
i−1, xi, m

)

= P (yi|xi) , i = 1, 2, . . . , n. (1)

We denote a discrete time memoryless channel as: DMC.
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Fig. 2. (a) Per (R) as it was believed prior to Shannon theorem (b) Per (R) as derived from Shannon’s theorem on

capacity of channels

Definition 1 (Code) An
(

n, 2nR
)

code for the channel
(

X , PY |X ,Y
)

consists of:

1) A message M that is distributed uniformly on
{

1, . . . , 2nR
}

.

2) An encoding function

f :
{

1, 2, . . . , 2nR
}

→ X n, (2)

yielding codewords xn (1) , xn (2) , . . . , xn
(

2nR
)

. The set of codewords is called the

codebook.

3) A decoding function

g : Yn →
{

1, 2, . . . , 2nR
}

, (3)

which is a deterministic rule that assigns a guess to all possible output sequences..

Definition 2 (Maximal probability of error) The maximal probability of error, P
(n)
max,

for an (n, 2nR) code is defined as:

P (n)
max = max

m
P
(

M 6= M̂ |M = m
)

, (4)

Note that M̂ depends on the chosen codebook since M̂ = g(Y n) and Xn = f(M).

Therefore, we abuse notation when we omit the dependence on the codebook.

Definition 3 (Average probability of error) The average probability of error, P
(n)
er , for

an (n, 2nR) code is defined as:

P (n)
er = Pr

(

M 6= M̂
)

(5)
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Definition 4 (Achievable rate) the rate R is achievable if there exists a sequence of
(

n, 2nR
)

codes such that:

lim
n→∞

P (n)
er = 0. (6)

Definition 5 (Capacity) The capacity is denoted by C, and is defined as the supremum

over all achievable rates.

In contrast to lossless compression, where one is interested in minimizing the rate, here,

higher rate corresponds to more information.

Note that Def. 5 is an operational definition, namely, it arises from the communi-

cation definition. The next theorem relates the operational definition of capacity to a

mathematical quantity and can be calculated.

Theorem 1 (Channel capacity) For a memoryless channel (X , PY |X ,Y), the capacity

is given by

C = max
PX

I (X ; Y ) , (7)

where the joint distribution is PXPY |X .

Remarks:

• The capacity satisfy C ≤ log2 |X |.

• The capacity satisfy C ≤ log2 |Y|.

• The capacity is concave in PX . Thus, the maximum can be computed efficiently.
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II. EXAMPLES

A. Binary clean channel

The binary clean channel has binary input and output alphabets, X = Y = {0, 1}. The

channel is given by Y = X and is described in Figure 3:

00

11

X Y

Fig. 3. Binary clean channel

It is easy to note that the maximal achievable rate is 1[bit/Channel use]. The channel

coding coding theorem asserts this simple observation with:

C = max
PX

I(X ; Y )

= max
PX

H(X)

= 1. (8)

B. Noisy channel with non-overlapping outputs

The channel has a input alphabets, X = {0, 1}, and quadratic channel output alphabet

Y = {0, 1, 2, 3}. The channel is described in Figure 4: The capacity is at most C ≤

log |X | = 1[bit/Channel use]. Moreover, we can achieve the upper bound with p(x) ∼

Bern(0.5). Formally, from the channel coding coding theorem:

C = max
PX

I(X ; Y ) (9)

= max
PX

H(X)−H(X|Y ) (10)

= max
PX

H(X) (11)

= 1. (12)
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Fig. 4. Noisy channel with non-overlapping outputs.

C. BSC - Binary symmetric channel

Consider the BSC, shown in Figure 5:

00

1 1
1− δ

1− δ

δ
δ

Fig. 5. BSC - Binary symmetric channel. C = 1−Hb (δ)

The output Y , can be written as:

Y = X ⊕ Z,

where Z ∼ Bernoulli (δ) and Z ⊥ X (Z and X are independent). Note that if Z = 1,

an error occurred, and Z = 0 means that there is no error. The mutual information is

given by:

I (X ; Y ) = H (Y )−H (Y |X)

(a)
= H (Y )−H (Y ⊕X|X)

(b)
= H (Y )−H (Z|X)
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(c)
= H (Y )−H (Z)

(d)

≤ 1−Hb (δ) (13)

Where:

• H2 (δ) is the binary entropy function, i.e.:

H2 (δ)
△
= −δ log (δ)− (1− δ) log (1− δ) (14)

• (a) - Given X , there is a one to one mapping between X and Y .

• (b) - Follows from the fact that Y ⊕X = Z.

• (c) - Follows from the fact that Z ⊥ X .

• (d) - Follows from H (Y ) ≤ log |Y|.

Note that if one chooses X ∼ Ber (0.5), equality in (d) holds, i.e. I (X ; Y ) = 1−Hb (δ).

Special cases: Denote by C(δ), the BSC capacity

• When δ = 0, the channel is clean and C(0) = 1.

• When δ = 0.5, for all input distributions, the input and the output and are

independent. Therefore, the mutual information and the capacity are equal to zero.

• When δ = 1, each input is always flipped. However, the decoder is able to produce

X by inverting the output Y . Thus, C(1) = 1.

Puzzle: Show from the operational definitions only that the capacity of the BSC satisfy

C(δ) = C(1− δ).

One more example, called the binary erasure channel, is explained in details in the

appendix of the lecture.

III. PROOF OF THE CAPACITY THEOREM

In this section we prove the capacity theorem, i.e., Theorem 1. In order to so we need

to prove two directions. First, that a rate larger then maxPX
I(X ; Y ) is not achievable

(this is called converse). In other words we prove that the capacity is upper bounded by

maxPX
I(X ; Y ). This is done in subsection III-A. Then we show that a rate that is lower

then I(X ; Y ) is achievable, in other words, we prove that the capacity is lower bounded

by I(X ; Y ). This is called achvability proof and is described in Subsection III-C. These
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two parts yield Theorem 1. For the converse part the main tool is Fano’s inequality and

for the achievability part we use joint weak typicality which is explained in III-B.

A. Proof of the converse for the capacity theorem

For the converse proof of the Coding Theorem, we will need a technical lemma that

describes the probabilistic relations between inputs and outputs.

Lemma 1 (Memoryless channel without feedback) For a memoryless channel (with-

out feedback),

P (yn|xn, m) =
n
∏

i=1

P (yi|xi) (15)

Remark: When no feedback is available, a memoryless channel can also be defined by

(15).

Proof of Lemma 1: Consider the following chain of equalities,

P (yn|xn, m) =
P (yn, xn, m)

P (xn, m)

=
P (m)

∏n
i=1 P (yi, xi|y

i−1, xi−1, m)

P (xn, m)

(a)
=
P (m)

∏n
i=1 P (xi|y

i−1, xi−1, m)P (yi|xi, x
i−1, yi−1, m)

P (xn, m)

(b)
=
P (m)

∏n
i=1 P (xi|x

i−1, m)P (yi|xi)

P (xn, m)

(c)
=
P (m)P (xn|m)

∏n
i=1 P (yi|xi)

P (xn, m)

=

n
∏

i=1

P (yi|xi) (16)

Where:

(a) Follows from the chain rule.

(b) Follows from the memoryless property in (2) and the Markov chain Xi−(X i−1,M)−

Y i−1.

(c) Follows from the probability chain rule.
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Proof of the converse part of Theorem 1: In the converse part (upper bound on C)

we need to prove that if R is an achievable rate then

R ≤ CI , max
P (X)

I (X ; Y ) . (17)

Fix a code (n, 2nR) with a probability of error P
(n)
e . Denote by M the message, which

is distributed uniformly over {1, ..., 2nR}, to be sent. Thus, we have:

nR
(a)
= H (M)

= H (M) +H (M |Y n)−H (M |Y n)

(b)
= I (M ; Y n) +H (M |Y n)

(c)
= I (M ; Y n) +H

(

M |Y n, M̂
)

(d)

≤ I (M ; Y n) +H
(

M |M̂
)

(e)

≤ I (M ; Y n) + (1 + Pe · nR)

(f)
= I (M ; Y n) + n · ǫn

(g)
= H (Y n)−H (Y n|Xn,M) + n · ǫn

(h)
=

n
∑

i=1

[

H
(

Yi|Y
i−1

)

−H (Yi|Xi)
]

+ n · ǫn (18)

(i)

≤

n
∑

i=1

[H (Yi)−H (Yi|Xi)] + n · ǫn (19)

=
n

∑

i=1

I (Yi;Xi) + n · ǫn (20)

(j)

≤ n · CI + n · ǫn (21)

Where:

(a) The message distributed uniformly on
(

1, 2, ..., 2nR
)

. Thus, H (M) = log |M| = nR.

(b) Definition of Mutual Information

(c) Since M̂ = g (Y n) is a deterministic function of Y n.

(d) Conditioning reduces entropy.
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(e) Follows from Fano’s inequality: H
(

M |M̂
)

≤ 1 + P
(

M 6= M̂
)

log |M| = 1 +

PenR.

(f) follows by defining ǫn = 1
n
+ PeR

(g) Xn is a function of the Message M .

(h) Follows from Lemma 1.

(i) Follows from conditioning reduced entropy.

(j) Follows by taking the maximum over P (x1)P (x2), . . . , P (xn). The optimization

problem is then equal to CI for all i = 1, . . . , n .

Now, dividing both sides of the equation by n, we have

R ≤ CI + ǫn. (22)

If R is an achievabale rate, then there exists a sequence of codes (n, 2nR) such that

P
(n)
e → 0 which implies ǫn → 0. Therefore we obtained that if R is achievable, then

R ≤ CI , and this completes the proof.

We will now give a brief subsection on joint typicality. This tool will be used in the

achievability part, where we show the existence of a code with rate that is arbitrarily

close to CI and attains vanishing probability of error.

B. Joint weak typicality

Definition 6 (Weak typicality) The set of ǫ−jointly typical sequences with respect to

PX,Y is defined by

A(n)
ǫ = {(xn, yn) ∈ X n × Yn :| −

1

n
log p (xn)−H (X) | ≤ ǫ, (23)

| −
1

n
log p (yn)−H (Y ) | ≤ ǫ, (24)

| −
1

n
log p (xn, yn)−H (X, Y ) | ≤ ǫ}, (25)

where p(xn, yn) =
∏n

i=1 PX,Y (xi, yi)

Theorem 2 Let Xn, Y n be i.i.d. ∼ PXY (x, y) then:

1) limn→∞Pr{(Xn, Y n) ∈ Anǫ } = 1

2) |Anǫ | ≤ 2n·(H(X,Y )+ǫ)
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3) If X̃n, Ỹ n : X̃n
(i.i.d)
∼ PX (x) , Ỹ n

(i.i.d)
∼ PY (y) ,

(

X̃n, Ỹ n
)

∼ PXn (xn) · PY n (yn) ,

then

Pr
{

(X̃n, Ỹ n) ∈ Anǫ

}

≤ 2−n(I(X,Y )−3·ǫ). (26)

Proof:

1) follows from the weak law of large numbers.

2) follows from:

1 =
∑

xn,yn

PXn,Y n (xn, yn)

(a)

≥
∑

(xn,yn)∈An
ǫ

PXn,Y n (xn, yn)

(b)

≥
∑

(xn,yn)∈An
ǫ

2−n·(H(X,Y )+ǫ)

= |Anǫ | · 2
−n·(H(X,Y )+ǫ) (27)

(a) follows from decreasing the number of summed elements;

(b) Follows from (25).

3) We need to upper bounds the probability that (X̃n, Ỹ n) is in the set A
(n)
ǫ . We do so

by summing over the probability of the elements in A
(n)
ǫ according to the distribution

of (X̃n, Ỹ n).

P
[(

X̃n, Ỹ n
)

∈ Anǫ

]

=
∑

(xn,yn)∈An
ǫ

PX̃n,Ỹ n (xn, yn)

=
∑

(xn,yn)∈An
ǫ

PXn (xn)PY n (yn)

(a)

≤ |Anǫ | · 2
−n(H(X)−ǫ) · 2−n(H(Y )−ǫ)

(b)

≤ 2n(H(X,Y )+ǫ) · 2−n(H(X)−ǫ) · 2−n(H(Y )−ǫ)

(c)
= 2−n(I(X;Y )−3ǫ) (28)

Where:

• (a) - Using the bound on PXn (xn) = and PY n (yn) according to (23) and (24).
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• (b) - Using the bound on the size of the set, i.e., |Anǫ | ≤ 2n·(H(X,Y )+ǫ).

• (c) - Follows for the definition of mutual information.

C. Proof of the Achievability

We now prove that if R < CI then for a DMC there exists a sequence of codes

(2n, n) such that P
(n)
er

−→
n → ∞ 0. The proof is based on a random coding; the code is

generated randomly, and then we show that the expectation (over all codebooks) of the

error probability goes to zero. Since the expected value goes to zero, there exists at least

one code for which the probability of error goes to zero.

Proof of the achievability part of Theorem 1:

Design of the code: We fix PX(x) and a rate R, and generate the codebook C, with

entries Xn (i), where Xn (i) is the codeword associated with message i, and: Xn (i)
i.i.d
∼

PX(x), i = 1, . . . , 2nR. Reveal the codebook to the encoder and the decoder.

Encoder: For a message i, transmit Xn(i), that is, the ith codeword in C.

Decoder: The decoder receives Y n, and looks for all Xn ∈ C such that: (Xn, Y n) ∈ Anǫ .

If there is a unique codeword, Xn(i) that is typical, it declares m̂ = i. In case no message

or more than one message are jointly typical with Y n, it declares an error.

Analysis of error: Consider

Pe = P
(

M 6= M̂
)

=
2nR

∑

m=1

P (M = m)P
(

M 6= M̂ |M = m
)

=
1

2nR

2nR

∑

m=1

P
(

M 6= M̂ |M = m
)

,

where the last equality holds since the message is distritbuted uniformly. Because of

the symmetry in the code construction (with respect to messages), we may assume that

m = 1, and analyze P
(

M 6= M̂ |M = 1
)

.

Recall that an error occurs if :

1) E1 = (Xn(1), Y n) /∈ Anǫ
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2) Ej = (Xn(j), Y n) ∈ A
(n)
ǫ .

• The probability of E1 tends to zero from Theorem 2.

• Consider the probability of the second error event,

PE2
= P





2nR

⋃

j=2

Ej





(a)

≤

2nR

∑

j=2

P (Ej)

(b)

≤ 2nR2−n(I(X;Y )−3ǫ) =

= 2n(R−I(X;Y )+3ǫ) (29)

Where:

(a) Follows from the union bound, e.g. , P (A ∪B) ≤ P (A) + P (B).

(b) Follows from Theorem 2.

Hence, if R < I (X ; Y ), then PError2
−→

n → ∞ 0. Note that we showed that EC [P
(n)
e ] → 0,

but we need to show that there exists a single code code with Pe → 0. This is settled

from the fact that if the expectation of a R.V. goes to zero, then there exists an instance

of the R.V. that goes to zero as well.

Having showed that there exists a code s.t. the average error probability, defined in

(3), tends to 0, as n → ∞, we will now show that a small average probability of error

implies a small maximal probability of error, defined in (2), at essentially the same rate.

Theorem 3 (Half Codewords) Assume that Per = ǫ. There exists a set of codewords

that is half of the size, i.e.:
2nR

2
= 2n·(R−

1

n
) (30)

and Pmax ≤ 2ǫ, where Per and Pmax are defined in (3) and (2), respectively.

Proof: If we throw away the worst half of the codewords, with the highest error

probabilities, we will remain with a codebook, consisting of the best half of the

codewords. The remaining codewords must have a maximal probability of error less

than 2ǫ (Otherwise, these codewords themselves would contribute more than 2ǫ to the
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sum, and Per would be greater than ǫ). If we reindex these codewords, we have 2nR−1

codewords. Throwing out half the codewords has changed the rate from R to R − 1
n

,

which is negligible for large n.

This implies that if achievability holds for the average error probability, it holds for

the maximum error probability as well.

Example 1 (Illustration of proof of Theorem 3) Assume that the average score in a

specific class is 30, follows that at least half of the class, scored less than 60.

Proof: If half of the class scored exactly 60, and the other half scored exactly 0, then

the average score is 30. But if more than 50 percent score above 60, the average score

is above 30 and we get contradiction.

In our example, the score 30 represents ǫ and the score 60 represents 2× ǫ.

APPENDIX A

BINARY ERASURE CHANNEL (BEC)

A Binary Erasure Channel (BEC) is a common communications channel model used

in coding theory and information theory. In this model, a transmitter sends a bit (a zero

or a one), and the receiver either receives the bit or it receives a symbol ’?’ that the

represents that the bit was erased, namely, the receiver knows that a bit was sent but it

does not know which one. For instance, in an internet protocol, ’?’ may represent that

the packet received was corrupted and {0, 1} may represent tow possible packets.

Where ’?’ stands for an erased bit.

1) No-Feedback channel: The capacity of the channel is given by

C = maxPX
I(X ; Y ), and C is known to be the upper bound of the achievable

rates. So, we try to find the channel capacity:

I(X ; Y ) = H(X)−H(X|Y ) (31)

= H(X)−
∑

ψ∈Y

P (y = ψ)H(X|y = ψ) (32)



6-14

1− e

1− e

e

e

0

1

0

?

1

X Y

Fig. 6. Binary Erasure Channel

= H(X)− P (y = 0)H(X|y = 0)− P (y = 1)H(X|y = 1)− P (y =′?′)H(X|y =′?′)

(33)

Where ’?’ stands for an erased bit (See Figure 6).

Since the model of the channel suggests that for a successfully recieved bit we know

the sent bit with probability of 1, meaning X is determined by Y (given y 6=′?′), we

get H(X|y = 0) = H(X|y = 1) = 0. Also, if the bit was erased, by the symmetry of

the channel we have no additional information regarding the value of the transmitted bit.

Therefore H(X|Y =′?′) = H(X), and P (y =′?′) = e by symmetry. Substituting this

into Eq. 31:

I(X ; Y ) = H(X)− P (y =′?′)H(X|y =′?′) = H(X)− e ·H(X) = (1− e)H(X) (34)

Finally, we need to find the supremum of the mutual information over all the possible

distributions of X .

C = sup
PX

I(X ; Y ) = (1− e) sup
PX

H(X) = 1− e (35)

Where the last equation holds for X ∼ Bernoulli(1
2
).Therefore an upper bound on

the achievable rate is indeed R ≤ C = 1− e, as suggested.
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2) Code achieving capacity that uses feedback: Assume the transmitter at time i knows

the previous outputs of the channel,i.e., yi−1, so we can re-transmit the “erased” bit. In

order to successfully recieve n bits, we must transmit n
1−e

bits: First we transmit n bits.

Since Pe = e and we have feedback, we know that e · n bits were erased, so we need to

re-transmit them. This time, e · en bits were erased, so once again we re-transmit them,

and so on. All together, we have transmitted:

n+ en + e2n + · · · =

∞
∑

j=0

ejn = n ·

∞
∑

j=0

ej = n ·
1

1− e
=

n

1− e
(36)

In order to successfully recieve n bits.

Definition 7 (Code Rate) In telecommunication and information theory, the code rate

R of a channel code is the proportion of the data-stream that is useful (non-redundant).

That is, if the code rate is R = k/n, for every k bits of useful information, the coder

generates totally n bits of data, of which n-k are redundant.

In the feedback erasure channel scenario, the ratio of useful information to total sent

information was R = n
n/(1−e)

= 1− e


