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Introduction to Information and Coding Theory

Lecture 5

Lecturer: Haim Permuter, Scribe: Boris Bakshan, Ronen Peker and Yaniv Nissenboim

I. ASYMPTOTIC EQUIPARTITION (AEP)

Let X be an i.i.d. random variable distributed according to PX . Throughout this lecture

we assume that the sequence Xn is distributed i.i.d accordingly to P (x), i.e., P (xn) =
∏n

i=1 P (xi).

Definition 1 (Typical set) The typical set, A
(n)
ǫ , with respect to PX , is the set of

sequences (x1, x2, ..., xn) ∈ X n with the property

H(X)− ǫ ≤ −
1

n
logP (xn) ≤ H(X) + ǫ. (1)

A more precise notation of the typical set would be A(n)(X) or A(n)(PX), since the

typical set is defined by the distribution of the r.v. X . However, throughout this lecture

we talk only about typical set defined by PX and therefore we allows us to omit it1.

Theorem 1 (Properties of typical set) Let Xn be an i.i.d. sequence distributed accor-

ding to PX(x). For every ǫ > 0 and n sufficiently large, the set A
(n)
ǫ has the following

properties:

1) if xn ∈ A
(n)
ǫ , then,

2−n(H(X)+ǫ) ≤ Pr{Xn = xn} ≤ 2−n(H(X)−ǫ). (2)

2) For n sufficiently large

Pr(Xn ∈ A(n)
ǫ ) ≥ 1− ǫ. (3)

1Later on, in the lectures on channel capacity we will define a joint typical set where we will use the notation

A
(n)(X,Y ) which is the typical set of the joint (X,Y )
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3) The cardinality of the set is denoted by |A|, i.e., the number of elements (cardinality)

in the set A. The cardinality of the typical set is upper bounded by

∣

∣A(n)
ǫ

∣

∣ ≤ 2n(H(X)+ǫ) (4)

4) The cardinality of the typical set is lower bounded by

∣

∣A(n)
ǫ

∣

∣ ≥ (1− ǫ)2n(H(X)−ǫ) (5)

Informally: the typical set has probability nearly 1, all elements in it are nearly

equiprobable, and the number of elements in it is nearly 2nH(X) .

Proof:

1) follows from the definition of A
(n)
ǫ .

2) follows from the law of large numbers.

lim
n→∞

Pr

{
∣

∣

∣

∣

1

n
logP (xn)−H(X)

∣

∣

∣

∣

< ǫ

}

= 1 (6)

Hence, for any δ > 0 including δ = ǫ we can find an N(δ) s.t. for all n > N(δ)

Pr

{
∣

∣

∣

∣

1

n
logP (xn)−H(X)

∣

∣

∣

∣

< ǫ

}

≥ 1− δ. (7)

3) Consider

1 =
∑

xn∈Xn

P (xn)

(a)

≥
∑

xn∈A
(n)
ǫ

P (xn)

(b)

≥
∑

xn∈A
(n)
ǫ

2−n(H(X)+ǫ)

=
∣

∣A(n)
ǫ

∣

∣ 2−n(H(X)+ǫ), (8)

where (a) follows from the fact that we sum over a smaller set, (b) from Eq. (2).

Note that (8) implies (4).

4) According to (3) for n sufficiently large we have

Pr{A(n)
ǫ } ≥ 1− ǫ (9)



5-3

Now consider

1− ǫ ≤ Pr(A(n)
ǫ ) ≤

∑

xn∈A
(n)
ǫ

2−n(H(X)−ǫ) =
∣

∣A(n)
ǫ

∣

∣ 2−n(H(X)−ǫ) (10)

Finally, note that (10) implies (5).

II. FIXED LENGTH LOSSLESS SOURCE CODING

In this section we consider lossless source coding (or more precisely near lossles source

coding since we ask for the error to be arbitrary small) and fixed-block length. Fixed

blocklength means that we map N source symbols into NR bits. The length of the block

is N . The rate is defined as the number of bits per symbol. Namely,

R = NR
N

bits
source symbol

.

Xn

Encoder
nR bits

f(Xn) ∈ {1, ..., 2nR}
Decoder

g(f(xn)) = X̂n

Abbildung 1. Source coding with a fixed block-length code

Definition 2 (Fixed-length source code) The fixed-length source code (n, 2nR) inclu-

des:

1) Encoder f : X n −→ {0, 1}nR

2) Decoder g : {0, 1}nR −→ X̂ n

For a given code with rate R and blocklength n the probability of error is defined as

P (n)
e , Pr(X̂n 6= Xn) (11)

or in the notation of the code

P (n)
e , Pr(g(f(Xn)) 6= Xn). (12)

Figure 1 depicts the fixed-length coding system. The goal is to find a sequence of coders

such that limn→∞ P
(n)
e = 0.
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III. HIGHEST ACHIEVABLE RATE

Definition 3 (An achievable rate) A rate R is achievable if there exists a sequence of

codes (n, 2nR) such that:

lim
n→∞

Pr(X̂n 6= Xn) = 0 (13)

Let R∗ denote the infimum over all achievable rates. The next theorem relates R∗

which is defined operationally to a mathematical quantity.

Theorem 2 (Lower bound of R) For a memoryless source the smallest achievable rate

R∗ satisfies

R∗ = H(X). (14)

The proof includes two parts: achievability and converse. In the achievability part we

need to show that if R > H(X), then there exists a sequence of fixed-length source

codes (n, 2nR) such that Pr{Xn = X̂n} = 1. In the converse part we need to show

that given an R that is achievable, i.e., there exists a sequence of codes (n, 2nR) s.t.

Pr{Xn = X̂n} = 1, then R > H(X).

Proof of achievability part: We need to show that if R > R∗, then there exists a

sequence of codes (n, 2nR) such that P (X̂n = Xn) −→ 1. Lets fix R, such that R =

H(x) + ǫ. Now let’s define the code and do the error analysis:

Code Design: Assign to each sequence in A
(n)
ǫ an index.

Encoder: If xn ∈ A
(n)
ǫ then sends the index {1,...,2nR} and if not, sends 0000...0.

Decoder: Looks at the index, and constructs x̂n that corresponds to the index.

Error analysis: We have an error if the source xn is not in the typical set A
(n)
ǫ , i.e.,

Pr(X̂n 6= Xn) = Pr(Xn /∈ A(n)
ǫ ) (15)

and the second property of typical sets given in Theorem 1, this probability goes to zero

for any ǫ > 0. �

In the converse we need to show that if R is achievable then R ≥ H(X). For this we

will use a new inequality, called Fano’s inequality. Suppose that we wish to estimate a

random variable X , by an estimator X̂ . Further more assume that Pr(X̂ 6= X) = ǫ. What
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can we say about H(X|X̂). Intuitively, if ǫ is very small then H(X|X̂) should also be

very small. The next theorem, called Fano’s inequality quantifies this intuition.

Theorem 3 (Fano’s inequality) For any estimator X̂ with Pr{X̂ 6= X} = ǫ, we have

H(X|X̂) ≤ 1 + ǫ log |X | . (16)

Proof: Let’s define:

λ =











1 if X = X̂

0 if X 6= X̂

The PMF of λ is defined by:

P (λ = 1) = ǭ,

P (λ = 0) = ǫ.

Now we consider the conditional entropy:

H(X|X̂)
(a)
= H(X, λ|X̂)

= H(λ|X̂) +H(X|λ, X̂)

= H(λ|X̂) + P (λ = 0) ·H(X|λ = 0, X̂) + P (λ = 1) ·H(X|λ = 1, X̂)

(b)

≤ 1 + P (λ = 0) ·H(X|λ = 0, X̂) + P (λ = 1) ·H(X|λ = 1, X̂)

(c)
= 1 + P (λ = 0) ·H(X|λ = 0, X̂)

(d)

≤ 1 + ǫ log(|X |)

Where:

(a) follows from the fact that H(X, λ|X̂) = H(X|X̂) + H(λ|X̂,X) where the last

entropy equals zero.

(b) follows from H(λ|X̂) ≤ H(λ) ≤ log |λ|.

(c) follows from the fact that if λ = 1 then X = X̂ and than H(X|λ = 1, X̂) = 0.

(d) follows from the fact that H(X|λ = 0, X̂) is bounded by log |X | and P (λ = 0) =

P (X 6= X̂).
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Proof of the Converse part of Theorem 2: Fix a code with a rate R, i.e., (n, 2nR) with

a probability of error P n
e = Pr (Xn 6= X̂n). Let’s define T = f(Xn) ∈ {1, ..., 2nR}, from

this definition we get nR ≥ H(T ) . Consider2,

nR ≥ H(T )

= I(Xn;T )

= H(Xn)−H(Xn|T )

= H(Xn)−H(Xn|T, X̂n)

≥ nH(X)−H(Xn|X̂n)

≥ nH(X)− 1− P n
e n log(|X |) (17)

Hence we obtained that

R ≥ H(X)−
1

n
− P n

e log(|X |). (18)

Now, since R is achievable there exists a sequence of codes (n, 2nR) where

limn→∞ P n
e → 0. This means that for n large enough P n

e is arbitrary small (and positive)

therefore (18) implies that R ≥ H(X). �

A. Lossless source coding with side information

In many distributed applications, the receiver may have some prior side information

about X , before it is sent. Source coding with side information addresses encoding

schemes that exploit the side information in order to reduce the length of the code.

In this case assume (X, Y ) are i.i.d with P (x, y). A code (n, 2nR) is defined as

Definition 4 (Fixed-length source code with side infomation) The fixed-length sour-

ce code (n, 2nR) includes:

1) Encoder f : X n × Yn −→ {0, 1}nR

2as an exercise, please explain each step of (17)
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2) Decoder g : {0, 1}nR ×Yn −→ X̂ n

An achievable rate is defined as in the case that there is no side information, namely

Def. 3.

Xn
T ∈ 2nR

Encoder

Y n

X̂n

Decoder

Y n

Abbildung 2. Coding with side information

Xn MUX

Y n

Encoder 0

Encoder 1

Decoder 0

Decoder 1

X̂0
n

X̂1
n DE-MUX

Y n

Abbildung 3. An equivalent diagram using Multiplexer

Let us denote R∗
X|Y the infimum achievable rate.

Theorem 4 (Infimum for lossless reconstruction) The infimum achievable rate for

lossless reconstruction of X where side information Y is available at the encoder and

decoder is given

R∗
X|Y = H(X|Y ) =

∑

y∈X

p(y)H(X|Y = y) (19)

Proof: Achievability: If R > R∗, then exists a sequence of codes such that

Pr(X̂n 6= Xn) −→ 0.

Lets fix R, such that R = H(X|Y ) + ǫ.
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Code design: For each sequence in Xn, we have sequence of Y n of the same

length. Each time we have in Y = 1, we take the corresponding bits of X and construct

a code. The corresponding bits of Xn will be a sequence in A
(n)
0ǫ or A

(n)
1ǫ . Namely we

assign two indexes:

1. {1,...,2n0R0} for A
(n)
0ǫ of Xn when Y = 1.

2. {1,...,2n1R1} for A
(n)
1ǫ of Xn when Y = 0.

0 0 1 0 0 1 0 0 1 0 1 1

1 1 0 1 1 1 0 1 1 1 1 1 1 1 0 1X =

Y =

Abbildung 4. Using Y as side information source. The sequence on the right corresponds to Y = 0.

Encoder - Consists two encoders followed by mux.

If Y = 1 and xn ∈ A
(n)
0ǫ then send the index {1,...,2n0R0} and if not, send 0000...0.

If Y = 0 and xn ∈ A
(n)
1ǫ then send the index {1,...,2n1R1} and if not, send 0000...0.

Decoder - Consist demux followed by two decoders. Each decoder looks at the index,

and constructs X̂i

n
that corresponds to the index. Then by the value of Y the demux

choose the proper sequence.

And we get that:

n0 + n1 = n (20)

nR = n0R0 + n1R1 (21)

Now we can write:

R =
n0

n
R0 +

n1

n
R1

≥ P (y = 0)H(X|y = 0) + P (y = 1)H(X|y = 1)
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= H(X|Y )

(22)

And finaly:

Pr(X̂n 6= Xn) −→
n → ∞ 0 (23)

thus R ≥ H(X|Y ) .

Converse: for the converse part, fix a scheme of rate R for a block of length n with

a probability of error Pr(X̂n 6= Xn) = P
(n)
e and let T , f(Xn, Y n) , consider:

nR ≥ H(T ) (24)

(a)

≥ H(T |Y n) (25)

≥ I(Xn;T |Y n) (26)

(b)
= H(Xn|Y n)−H(Xn|T, Y n) (27)

(c)
= nH(X|Y )− ǫn (28)

where ǫn → 0.

(a) follows from the fact that the conditioning decreases entropy.

(b) follows from the definition of mutual information.

(c) follows Fano’s inequality and the fact that (Xi, Yi) are i.i.d. .

The converse proof is completed by invoking the fact that since R is an achievable

rate there exists a sequence of codes at rate R such that ǫn → 0.


