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Introduction to Information and Coding Theory

Lecture 4

Lecturer: Haim Permuter Scribe: Amitai Koretz and Tamir Harush

I. OPTIMALITY OF HUFFMAN CODES

Lemma 1 (Canonical) For any probability distribution [p1, p2, ..., pm], there exists an

optimal prefix code which satisfies the following properties:

1) if pi ≥ pj , then li ≤ lj .

2) The two largest codewords are of the same length.

3) The two largest codewords differ only in the last bit.

A code which fulfils the above properties is termed canonical.

Proof:

1) Let us assume that the opposite is true. Namely, li ≥ lj . The contribution to the

expected length of these two codewords is (lipi + ljpj). Now, let us exchange

between the codewords such that li will be associated with symbol j and lj with

symbol i. The contribution to the expected length of these two codewords is (lipj+

ljpi). Now consider the difference

(lipi + ljpj)− (lipj + ljpi) = li(pi − pj) + lj(pj − pi) (1)

= (li − lj)(pi − pj) ≥ 0 (2)

since by assumption (li − lj) ≥ 0 and (pi − pj) ≥ 0. Hence, if li ≥ lj the code is

not optimal and we obtained a contradiction.

2) Assume the two largest codewords are not of the same length. Without changing

the expected codeword length, the larger of the two codewords may be truncated of

its extra bits so that it the same length as its sibling. The two must still be distinct

since the assumption is that the code is prefix code.

3) According to the previous item, the two largest codewords are of the same length.

Without loss of generality, that the last codeword may be changed so that they differ
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only in the last bit. Using the previous property we can conclude the codewords of

the two symbols with the lowest probability have the same codeword length, and

the differ only in the last bit.

Theorem 1 (Optimality of Huffman code) Huffman codes are optimal, i.e., having the

lowest average length-code..

Proof: Let C∗
m(p1, p2, . . . , pm−1, pm) be an optimal canonical code such that p1 ≥

p2 ≥ · · · ≥ pm and denote the ith codeword by C∗
m,i. Now define a new code Cm−1 using

the following definition:

Cm−1 =











Cm−1,i = C∗
m,i , for i ≤ m− 2

Cm−1,m−1 = merge(C∗
m,m−1, C

∗
m,m) , for i = m− 1

(3)

where the merge(·, ·) function truncates the bit which differentiates the two largest

codewords. Note that eq. (3) defines a construction of code Cm−1 from Cm and also

Cm from Cm−1 which exactly as one step in the Huffman code. Note that Cm−1 is a

prefix code.

In order to prove that Huffman code procedure obtains an optimal prefix code (namely

a prefix code with smallest expected length) we need to show that if Cm is an optimal

canonical prefix code then also Cm−1 is an optimal prefix code. If it is, we can apply the

procedure above (which is the procedure we do in the Huffman code in one step) again

and again till we get a code with only two codewords, and trivially this prefix code is

{0, 1}.

The expected codeword length of Cm−1 is calculated as:

L(Cm−1) =

m−2
∑

i=1

pili + pm−1(lm−1 − 1) + pm(lm − 1) (4)

= L(C∗
m)− pm−1 − pm (5)

where li is the length of the ith codeword. Therefore, we have that:

L(C∗
m) = L(Cm−1) + pm + pm−1. (6)
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It follows that Cm−1 is an optimal prefix code, since were that not the case, we can

improve the expected codeword length of C∗
m by replacing Cm−1 with another canonical

prefix code that is an optimal code. This contradicts the optimality of C∗
m. Therefore,

Cm−1 is optimal, and we may assume without loss of generality that it is canonical as

well.

II. LOWER BOUND OF THE EXPECTED LENGTH OF DECODABLE CODES VIA KRAFT’S

INEQUALITY

We have previously seen that Kraft’s inequality, i.e.

∑

i

2−li ≤ 1 (7)

holds for all prefix codes and we saw that a direct consequence of the inequality is that

E[l(X)] ≥ H(X). Now we will show that the above holds for any uniquely decodable

code.

Recall the definition of uniquely decodable codewords: We say that a code is uniquely

decodable, if any extension of codewords is non-singular, where an extension of

codewords is a concatenation f(x1)f(x2)f(x3)f(x4) . . . without any spaces or commas.

Recall that a code is non-singular if for any x1 6= x2 ⇒ f(x1) 6= f(x2).

Theorem 2 (Kraft inequality for uniquely decodable code) Kraft’s inequality is sat-

isfied for any uniquely decodable code.

Proof:

Assume a uniquely decodable code and an alphabet X . Then

(

∑

x∈X

2−l(x)

)k

(a)
=

∑

x1∈X

∑

x2∈X

· · ·
∑

xk∈X

2−l(x1)2−l(x2) · · · 2−l(xk)

(b)
=

∑

xk∈Xk

2−l(xk)

(c)
=

k·lmax
∑

m=1

a(m)2−m, (8)
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where a(m) is the number of sequences xk ∈ X k such that l(xk) = m and lmax is

the maximum codeword length. Step (a) follows the fact that
(
∑

x∈X x
)

(

∑

y∈Y y
)

=
∑

x∈X ,y∈Y xy, Step (b) from the fact that the code encode each input signal xi separately

and therefore l(xk) = l(x1)+l(x2)+...+l(xk) and Step (c) from changing the summation

from xk ∈ X k to the total length of code that is bounded between 1 (or even 1 · k) to

k · lmax.

Since the code is uniquely decodable, it must hold that a(m) ≤ 2m (otherwise there

are at least two symbols with the same codeword). Therefore for any k:
(

∑

x∈X

2−l(x)

)k

=
k·lmax
∑

m=1

a(m)2−m ≤
k·lmax
∑

m=1

2m2−m = k · lmax. (9)

Taking the kth root on both sides of the inequality, we have:

∑

x∈X

2−l(x) ≤ (k · lmax)
1

k . (10)

Since the above holds for any value of k, we let k → ∞ so that (k · lmax)
1

k −−−→
k→∞

1 1.

And therefore,

∑

x∈X

2−l(x) ≤ 1. (11)

Corollary 1 For any uniquely decodable codes

E[l(X)] ≥ H(X) (12)

Proof: Inequality (12) follows from Kraft inequality as shown previously in lecture

3.

III. MARKOV CHAINS

Let X, Y, Z be random variables. We denote X → Y → Z if

P (x, y, z) = P (x)P (y|x)P (z|y), (13)

1 lim
k→∞

(k · lmax)
1
k = lim

k→∞

e
ln(k·lmax)

k −−−−→
k→∞

1 since k tends to infinity faster than ln k.
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or equivalently

P (z|x, y) = P (z|y). (14)

Lemma 2 If X → Y → Z, then X ← Y ← Z, so that the notation X − Y −Z may be

substituted.

Proof: P (z|x, y) = P (z|y)⇒ P (x|y, z) = P (x|y), since

P (x|y, z) =
P (x, y, z)

P (y, z)
=

P (x)P (y|x)P (z|y)

P (y)P (z|y)
=

P (x, y)

P (y)
= P (x|y). (15)

Lemma 3 (Data Processing Inequality)

X − Y − Z ⇒ I(X ; Y ) ≥ I(X ;Z). (16)

Proof:

I(X ; Y ) = H(X)−H(X|Y )

(a)
= H(X)−H(X|Y, Z)

= I(X ; Y, Z)

(b)
= I(X ;Z) + I(X ; Y |Z), (17)

where (a) follows from the Markov property defined by (14), and (b) follows from

chain-rule.

Proof: (Alternative proof for Lemma (3))

I(X ; Y, Z) = H(X)−H(X|Y, Z) ≥ H(X)−H(X|Z) = I(X ;Z) (18)

since conditioning reduces entropy.

Corollary 2 Mutual information cannot be increased by a deterministic transformation.

Proof: Let Z = g(Y ) such that Z is a deterministic function of Y . Therefore X −

Y − g(Y ), and according to the Data Processing inequality

I(X ; Y ) ≥ I(X ; g(Y )). (19)
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Theorem 3 (Law of Large Numbers) Let Xi be a collection of i.i.d. random variables.

It holds that

1

n

n
∑

i=1

Xi
P
−−−→
n→∞

µ (20)

where µ = E[X ], i.e.

∀ǫ > 0 lim
n→∞

Pr

(
∣

∣

∣

∣

∣

1

n

n
∑

i=1

Xi − µ

∣

∣

∣

∣

∣

> ǫ

)

= 0. (21)

Theorem 4 (Markov Inequality) If X is a non-negative random variable and a > 0,

then

Pr (X ≥ a) ≤
E[X ]

a
. (22)

Proof: Let

Y =











0 , X ≤ a

a , X > a.

(23)

Therefore Y ≤ X and E[Y ] ≤ E[X ]. Since E[Y ] = a · P (X ≥ a), we have that

a · Pr (X ≥ a) ≤ E[X ]. (24)

IV. CHALLENGE

Exercise 1 Finding an optimal prefix code for the infinite case:. Consider the set {pi}
∞
i=1,

such that for any i ∈ N : pi > 0, pi ≥ pi+1,
∑∞

i=1 pi = 1. Find an optimal code, i.e. a

prefix code such that E[L] is minimal (L is the length of the code word assigned to

each value of X , so L is equal to the length of the code word assigned to xi with

probability pi). If a student solve it (including a rigours proof of optimality) he/she

gets automatically 100!
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V. AEP - ASYMPTOTIC EQUIPARTITION

We now consider randomly generated sequences of length n taken from an alphabet

X .

Definition 1 (Typical Set) We define the typical set A
(n)
ǫ ⊆ X n as the set of sequences

xn ∈ X n such that xn ∈ A
(n)
ǫ iff

H(X)− ǫ ≤ −
1

n
logP (xn) ≤ H(X) + ǫ. (25)

Any sequence xn that satisfies the above is termed a typical sequence.

It will be shown that when n is very large, the probability that a randomly generated i.i.d.

sequence will belong to A
(n)
ǫ is close to one. Moreover, all sequences that are members of

A
(n)
ǫ will have equal probability of being generated, and there are approximately 2nH(X)

such sequences in |X |n.

|X |n

|A
(n)
ǫ | ∼= 2nH(X)

Fig. 1. Illustration of the typical set for all random i.i.d sequences of length n.

Theorem 5 Let Xi be a sequence of i.i.d. random variables. Then

−
1

n
logP (Xn)

P
−−−→
n→∞

H(X). (26)

Proof:

−
1

n
logP (Xn) = −

1

n
log

n
∏

i=1

P (Xi) = −
1

n

n
∑

i=1

logP (Xi). (27)

According to the Law of Large Numbers (Theorem 3), the rightmost expression

converges in probability, i.e. − 1
n

∑n

i=1 logP (Xi)
P
−−−→
n→∞

H(X).


