I. Optimality of Huffman Codes

Lemma 1 For any probability distribution \([p_1, p_2, ..., p_m]\), there exists an optimal prefix code which satisfies the following properties:

1) if \(p_i \geq p_j\), then \(l_i \leq l_j\).
2) The two largest codewords are of the same length.
3) The two largest codewords differ only in the last bit.

Proof:

1) Let us assume that the opposite is true. Namely, \(l_i \geq l_j\). The contribution to the expected length of these two codewords is \((l_ip_i + l_jp_j)\). Now, let us exchange between the codewords such that \(l_i\) will be associated with symbol \(j\) and \(l_j\) with symbol \(i\). The contribution to the expected length of these two codewords is \((l_ip_j + l_jp_i)\). Now consider the difference

\[
(l_ip_i + l_jp_j) - (l_ip_j + l_jp_i) = l_i(p_i - p_j) + l_j(p_j - p_i) \quad (1)
\]

\[
= (l_i - l_j)(p_i - p_j) \geq 0 \quad (2)
\]

since by assumption \((l_i - l_j) \geq 0\) and \((p_i - p_j) \geq 0\). Hence, if \(l_i \geq l_j\) the code is not optimal and we obtained a contradiction.

2) Assume the two largest codewords are not of the same length. Without changing the expected codeword length, the larger of the two codewords may be truncated of its extra bits so that it the same length as its sibling. The two must still be distinct since the assumption is that the code is prefix code.

3) According to the previous item, the two largest codewords are of the same length. Without loss of generality, that the last codeword may be changed so that they differ
only in the last bit. Using the previous property we can conclude the codewords of the two symbols with the lowest probability have the same codeword length, and the differ only in the last bit.

A code which fulfills the above properties is termed canonical.

Theorem 1 (Optimality of Huffman code) Huffman codes are optimal, i.e., having the lowest average length-code.

Proof: Let \(C^*_m(p_1, p_2, \ldots, p_{m-1}, p_m) \) be an optimal canonical code such that \(p_1 \geq p_2 \geq \cdots \geq p_m \) and denote the \(i \)th codeword by \(C^*_m, i \). Now define a new code \(C_{m-1} \) using the following definition:

\[
C_{m-1} = \begin{cases}
C_{m-1, i} = C^*_m, & \text{for } i \leq m - 2 \\
C_{m-1, m-1} = \text{merge}(C^*_m, C^*_m), & \text{for } i = m - 1
\end{cases}
\]

where the merge\((\cdot, \cdot)\) function truncates the bit which differentiates the two largest codewords. Note that eq. (3) defines a construction of code \(C_{m-1} \) from \(C_m \) and also \(C_m \) from \(C_{m-1} \) which exactly as one step in the Huffman code.

In order to prove that Huffman code procedure obtains an optimal prefix code (namely a prefix code with smallest expected length) we need to show that if \(C_m \) is an optimal canonical prefix code then also \(C_{m-1} \) is an optimal prefix code. If it is, we can apply the procedure above (which is the procedure we do in the Huffman code in one step) again and again till we get a code with only two codewords, and trivially this prefix code is \(\{0, 1\} \).

The expected codeword length of \(C_{m-1} \) is calculated as:

\[
L(C_{m-1}) = \sum_{i=1}^{m-2} p_i l_i + p_{m-1}(l_{m-1} - 1) + p_m(l_m - 1)
\]

\[
= L(C^*_m) - p_{m-1} - p_m
\]

where \(l_i \) is the length of the \(i \)th codeword. Therefore, we have that:

\[
L(C^*_m) = L(C_{m-1}) + p_m + p_{m-1}.
\]
It follows that C_{m-1} is an optimal code, since were that not the case, we can improve the expected codeword length of C'_m by replacing C_{m-1} with an optimal code. This contradicts the optimality of C'_m. Therefore, C_{m-1} is optimal, and we may assume without loss of generality that it is canonical as well.

II. LOWER BOUND OF THE EXPECTED LENGTH OF DECODABLE CODES VIA KRAFT’S INEQUALITY

We have previously seen that Kraft’s inequality, i.e.

$$\sum_i 2^{-l_i} \leq 1$$

holds for all prefix codes and we saw that a direct consequence of the inequality is that $\mathbb{E}[l(X)] \geq H(X)$. Now we will show that the above holds for any uniquely decodable code.

Recall the definition of uniquely decodable codewords: We say that a code is uniquely decodable, if any extension of codewords is non-singular, where an extension of codewords is a concatenation $f(x_1)f(x_2)f(x_3)f(x_4)\ldots$ without any spaces or commas. Recall that a code is non-singular if for any $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$.

Theorem 2 (Kraft inequality for uniquely decodable code) Kraft’s inequality is satisfied for any uniquely decodable code.

Proof:

Assume a uniquely decodable code and an alphabet \mathcal{X}. Then

$$\left(\sum_{x \in \mathcal{X}} 2^{-l(x)} \right)^k \overset{(a)}{=} \sum_{x_1 \in \mathcal{X}} \sum_{x_2 \in \mathcal{X}} \ldots \sum_{x_k \in \mathcal{X}} 2^{-l(x_1)} 2^{-l(x_2)} \ldots 2^{-l(x_k)} \overset{(b)}{=} \sum_{x^k \in \mathcal{X}^k} 2^{-l(x^k)} \overset{(c)}{=} \sum_{m=1}^{k l_{\text{max}}} a(m) 2^{-m}, \quad (8)$$

where $a(m)$ is the number of sequences $x^k \in \mathcal{X}^k$ such that $l(x^k) = m$ and l_{max} is the maximum codeword length.
Step (a) follows the fact that \(\left(\sum_{x \in X} x \right) \left(\sum_{y \in Y} y \right) = \sum_{x \in X, y \in Y} xy \), step (b) from the fact that the code encode each input signal \(x_i \) separately and therefore \(l(x^k) = l(x_1) + l(x_2) + \ldots + l(x_k) \) and step (c) from changing the summation from \(x^k \in X^k \) to the total length of code that is bounded between 1 (or even \(1 \cdot k \)) to \(k \cdot l_{\text{max}} \).

Since the code is uniquely decodable, it must hold that \(a(m) \leq 2^m \) (otherwise there are at least two symbols with the same codeword). Therefore for any \(k \):

\[
\left(\sum_{x \in X} 2^{-l(x)} \right)^k = \sum_{m=1}^{k \cdot l_{\text{max}}} a(m) 2^{-m} \leq \sum_{m=1}^{k \cdot l_{\text{max}}} 2^m 2^{-m} = k \cdot l_{\text{max}}. \tag{9}
\]

Taking the \(k \)th root on both sides of the inequality, we have:

\[
\sum_{x \in X} 2^{-l(x)} \leq \left(k \cdot l_{\text{max}}\right)^{\frac{1}{k}}. \tag{10}
\]

Since the above holds for any value of \(k \), we let \(k \to \infty \) so that \((k \cdot l_{\text{max}})^{\frac{1}{k}} \xrightarrow{k \to \infty} 1 \).

And therefore,

\[
\sum_{x \in X} 2^{-l(x)} \leq 1. \tag{11}
\]

Corollary 1 For any uniquely decodable codes

\[\mathbb{E}[l(X)] \geq H(X)\] \tag{12}

Proof: Inequality (12) follows from Kraft inequality as shown previously in lecture 3.

III. Markov Chains

Let \(X, Y, Z \) be random variables. We denote \(X \to Y \to Z \) if

\[P(x, y, z) = P(x)P(y|x)P(z|y),\tag{13}\]

or equivalently

\[
\lim_{k \to \infty} (k \cdot l_{\text{max}})^{\frac{1}{k}} = \lim_{k \to \infty} e^{\frac{\ln(k \cdot l_{\text{max}})}{k}} \xrightarrow{k \to \infty} 1 \text{ since } k \text{ tends to infinity faster than } \ln k.
\]
\[P(z|x, y) = P(z|y). \] (14)

Lemma 2 If \(X \rightarrow Y \rightarrow Z \), then \(X \leftarrow Y \leftarrow Z \), so that the notation \(X \rightarrow Y \rightarrow Z \) may be substituted.

Proof: \(P(z|x, y) = P(z|y) \) \(\Rightarrow \) \(P(x|y, z) = P(x|y) \), since \(P(x|y, z) = \frac{P(x, y, z)}{P(y, z)} = \frac{P(x, y)P(z|y)}{P(y)} = P(x|y). \) (15)

Lemma 3 (Data Processing Inequality)

\[X \rightarrow Y \rightarrow Z \Rightarrow I(X; Y) \geq I(X; Z). \] (16)

Proof:

\[
I(X; Y) = H(X) - H(X|Y) \\
\overset{(a)}{=} H(X) - H(X|Y, Z) \\
= I(X; Y, Z) \\
\overset{(b)}{=} I(X; Z) + I(X; Y|Z),
\]

where \((a)\) follows from the Markov property defined by (14), and \((b)\) follows from chain-rule.

Proof: (Alternative proof for Lemma (3))

\[I(X; Y, Z) = H(X) - H(X|Y, Z) \geq H(X) - H(X|Z) = I(X; Z) \] (18)

since conditioning reduces entropy.

Corollary 2 Mutual information cannot be increased by a deterministic transformation.

Proof: Let \(Z = g(Y) \) such that \(Z \) is a deterministic function of \(Y \). Therefore \(X \rightarrow Y \rightarrow g(Y) \), and according to the Data Processing inequality

\[I(X; Y) \geq I(X; g(Y)). \] (19)
Theorem 3 (Law of Large Numbers) Let X_i be a collection of i.i.d. random variables. It holds that

$$\frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{p} \mu$$

(20)

where $\mu = \mathbb{E}[X]$, i.e.

$$\forall \epsilon > 0 \lim_{n \to \infty} \Pr\left(\left|\frac{1}{n} \sum_{i=1}^{n} X_i - \mu\right| > \epsilon\right) = 0.$$

(21)

Theorem 4 (Markov Inequality) If X is a non-negative random variable and $a > 0$, then

$$\Pr(X \geq a) \leq \frac{\mathbb{E}[X]}{a}.$$

(22)

Proof: Let

$$Y = \begin{cases}
0 & , \ X \leq a \\
\frac{a}{a} & , \ X > a.
\end{cases}$$

(23)

Therefore $Y \leq X$ and $\mathbb{E}[Y] \leq \mathbb{E}[X]$. Since $\mathbb{E}[Y] = a \cdot P(X \geq a)$, we have that

$$a \cdot \Pr(X \geq a) \leq \mathbb{E}[X].$$

(24)

IV. AEP - Asymptotic Equipartition

We now consider randomly generated sequences of length n taken from an alphabet \mathcal{X}.

Definition 1 (Typical Set) We define the *typical set* $A^{(n)}_\epsilon \subseteq \mathcal{X}^n$ as the set of sequences $x^n \in \mathcal{X}^n$ such that $x^n \in A^{(n)}_\epsilon$ iff

$$H(X) - \epsilon \leq -\frac{1}{n} \log P(x^n) \leq H(X) + \epsilon.$$

(25)

Any sequence x^n that satisfies the above is termed a *typical sequence*.
It will be shown that when n is very large, the probability that a randomly generated i.i.d. sequence will belong to $A^{(n)}$ is close to one. Moreover, all sequences that are members of $A^{(n)}$ will have equal probability of being generated, and there are approximately $2^{nH(X)}$ such sequences in $|\mathcal{X}|^n$.

Fig. 1. Illustration of the typical set for all random i.i.d sequences of length n.

Theorem 5 Let X_i be a sequence of i.i.d. random variables. Then

$$-\frac{1}{n} \log P(X^n) \xrightarrow{n \to \infty} H(X).$$

(26)

Proof:

$$-\frac{1}{n} \log P(X^n) = -\frac{1}{n} \log \prod_{i=1}^{n} P(X_i) = -\frac{1}{n} \sum_{i=1}^{n} \log P(X_i).$$

(27)

According to the Law of Large Numbers (Theorem 3), the rightmost expression converges in probability, i.e. $-\frac{1}{n} \sum_{i=1}^{n} \log P(X_i) \xrightarrow{P} \frac{n \to \infty}{} H(X)$.

\blacksquare