Mathematical methods in communication

Proof of Kraft's Inequality

I. Alternative Proof of Kraft's Inequality

Theorem 1 (Kraft's Inequality)
(i) For any prefix code $\left\{c_{i}\right\}_{i \geq 1}$, with lengths $\left\{l_{i}\right\}_{i \geq 1}$ we have:

$$
\begin{equation*}
\sum_{i} 2^{-l_{i}} \leq 1 \tag{1}
\end{equation*}
$$

(ii) Conversly if $\left\{l_{i}\right\}$ satisfy (1), then there exists a prefix code with these lengths.

Remark 1 The following proof of Kraft's inequality is preferable compared to the previous proof that was presented because it doesn't demand a finite set of codewords or lengths.

Proof: of (i):
Let $\left\{c_{i}\right\}$ be a prefix code, where c_{i} is a codeword of length $l_{i}=\left|c_{i}\right|$. We define a function $f: c_{i} \longrightarrow[0,1]$ that calculates the decimal value of c_{i}, by:

$$
f\left(c_{i}\right)=\sum_{j=1}^{l_{i}} c_{i, j} \cdot 2^{-j}
$$

For future reference, we inspect the interval $\left[f\left(c_{i}\right), f\left(c_{i}\right)+2^{-l_{i}}\right)$. Note that:

1. $0 \leq f\left(c_{i}\right) \leq 1$.
2. $f\left(c_{i} 000 \ldots 0\right)=f\left(c_{i}\right)$. i.e. adding zeroes at the end of the codeword does not change the value of $f\left(c_{i}\right)$.
3. $f\left(c_{i} 111 \ldots\right)=f\left(c_{i}\right)+\sum_{j=1}^{\infty} 2^{\left(-l_{i}+j\right)}=f\left(c_{i}\right)+2^{-l_{i}}$. This follows from:

$$
q^{n}-1^{n}=\left(1+q+q^{2}+\ldots+q^{n-1}\right)(q-1),
$$

which gives

$$
1+q+q^{2}+q^{3}+\ldots+q^{n}=\frac{q^{n+1}-1}{q-1}
$$

Without loss of generality, we may assume that the $\left\{c_{i}\right\}$ are arranged in an increasing lexicographic order, which means that $f\left(c_{i}\right) \leq f\left(c_{k}\right)$ for all $i \leq k$.

Since c_{i} is a prefix code we have:

$$
\begin{equation*}
f\left(c_{i+1}\right) \geq f\left(c_{i}\right)+2^{-l_{i}} \tag{2}
\end{equation*}
$$

Thus, we get that the intervals $\left[f\left(c_{i}\right), f\left(c_{i}\right)+2^{-l_{i}}\right)$ are pairwise disjoint.
By recurrent use of Inequality (2) we obtain:

$$
f\left(c_{m}\right) \geq \sum_{i=1}^{m} 2^{-l_{i}}
$$

Since, by definition $f\left(c_{m}\right) \leq 1$, this proves the first part of the theorem, i.e.

$$
\sum_{i=1}^{m} 2^{-l_{i}} \leq 1
$$

We have seen that a necessary condition for a code $\left\{c_{i}\right\}$ to be prefix is that the intervals $\left[f\left(c_{i}\right), f\left(c_{i}\right)+2^{-l_{i}}\right)$ are pairwaise disjoint. The proof of the second part of the theorem is based upon the claim that this condition is also sufficient:

Lemma 1 Given a code $\left\{c_{i}\right\}$ such that the intervals $\left[f\left(c_{i}\right), f\left(c_{i}\right)+2^{-l_{i}}\right)$ are disjoint, the code is prefix.

Remark 2 In the following proof we use the fact that in order to prove $A \Rightarrow B$ one can show that $B^{c} \Rightarrow A^{c}$ (i.e. not $B \Rightarrow \operatorname{not} A$).

Proof: We conversly assume that the code $\left\{c_{i}\right\}$ is not prefix. If it is so, we can find two codewords c_{m} and c_{n} (without loss of generality we assume $m>n$ thus $l_{m}>l_{n}$), for which the first $\left|c_{n}\right|$ bits of c_{m} are identical to the bits of c_{n}. In this case:

$$
f\left(c_{m}\right)=\sum_{j=1}^{l_{m}} c_{m, j} \cdot 2^{-j}=\sum_{j=1}^{l_{n}} c_{n, j} \cdot 2^{-j}+\sum_{j=l_{n}+1}^{l_{m}} c_{m, j} \cdot 2^{-j}<f\left(c_{n}\right)+2^{-l_{n}}
$$

So we get that $f\left(c_{m}\right)<f\left(c_{n}\right)+2^{-l_{n}}$, contradictly to the fact that the intervals $\left[f\left(c_{n}\right), f\left(c_{n}\right)+2^{-l_{n}}\right)$ and $\left[f\left(c_{m}\right), f\left(c_{m}\right)+2^{-l_{m}}\right)$ are pairwise disjoint. Thus the code is prefix.

Proof: of (ii):
Assume that the lengths $\left\{l_{i}\right\}$ are given and satisfy Kraft's inequality (1). We prove that we can find a prefix code with the given lengths. Without loss of generality, assume that $l_{1} \leq l_{2} \leq \ldots$. We define the word c_{i} to be the inverse image under the mapping f of the number $\sum_{j=1}^{i-1} 2^{-l_{j}}$, i.e. c_{i} is the only word (up to addition of zeroes from the right) such that the equality

$$
f\left(c_{i}\right)=\sum_{j=1}^{i-1} 2^{-l_{j}}
$$

holds.
To calculate c_{i} we use the function $f^{-1}:[0,1] \longrightarrow c_{i}$. In order to justify that use we first show that $0<f\left(c_{i}\right) \leq 1$.

From the structure of $f\left(c_{i}\right)$ it is easy to see that $f\left(c_{i}\right)>0$ for every i. Moreover, using the assumption of the theorem (i.e. inequality (1)) we get that

$$
f\left(c_{i}\right)=\sum_{j=1}^{i-1} 2^{-l_{j}} \leq 1
$$

for every i. Thus we get that $0<f\left(c_{i}\right) \leq 1$.
Next show that the length of every codeword c_{i} that is built this way is indeed no longer than l_{i}.

Again from the structure of $f\left(c_{i}\right)$, it is simple to see that the maximal number of bits needed for the codeword c_{i} is l_{i-1} bits. Because we assume that the lengths are arranged by rising order (i.e. $l_{i-1} \leq l_{i}$ for every i), the length of each codeword c_{i} cannot be longer than $\left|c_{i}\right|=l_{i}$. If it is shorter, we add zeroes from the right up to the wanted length.

To complete the proof, it is enough to show that the intervals

$$
I_{i}=\left[f\left(c_{i}\right), f\left(c_{i}\right)+2^{-l_{i}}\right)=\left[\sum_{j=1}^{i-1} 2^{-l_{j}}, \sum_{j=1}^{i} 2^{-l_{j}}\right)
$$

are pairwise disjoint and finally use Lemma 1.

Since by definition, $f\left(c_{i}\right)$ increases as i increases and the right border of the interval I_{i} is the left border of the interval I_{i+1}, the intervals $\left\{I_{i}\right\}$ are pairwise disjoint, which concludes the proof.

