I. ALTERNATIVE PROOF OF KRAFT’S INEQUALITY

Theorem 1 (Kraft’s Inequality)

(i) For any prefix code \(\{c_i\}_{i \geq 1} \), with lengths \(\{l_i\}_{i \geq 1} \) we have:

\[
\sum_i 2^{-l_i} \leq 1 \quad (1)
\]

(ii) Conversely if \(\{l_i\} \) satisfy (1), then there exists a prefix code with these lengths.

Remark 1 The following proof of Kraft’s inequality is preferable compared to the previous proof that was presented because it doesn’t demand a finite set of codewords or lengths.

Proof: of (i):

Let \(\{c_i\} \) be a prefix code, where \(c_i \) is a codeword of length \(l_i = |c_i| \). We define a function \(f: c_i \rightarrow [0, 1] \) that calculates the decimal value of \(c_i \), by:

\[
f(c_i) = \sum_{j=1}^{l_i} c_{i,j} \cdot 2^{-j}
\]

For future reference, we inspect the interval \([f(c_i), f(c_i) + 2^{-l_i}]\). Note that:

1. \(0 \leq f(c_i) \leq 1 \).
2. \(f(c_i000\ldots0) = f(c_i) \), i.e. adding zeroes at the end of the codeword does not change the value of \(f(c_i) \).
3. \(f(c_i111\ldots) = f(c_i) + \sum_{j=1}^{\infty} 2^{(-l_i+j)} = f(c_i) + 2^{-l_i} \). This follows from:

\[
q^n - 1^n = (1 + q + q^2 + \ldots + q^{n-1}) (q - 1),
\]

which gives
Without loss of generality, we may assume that the \(\{c_i\} \) are arranged in an increasing lexicographic order, which means that \(f(c_i) \leq f(c_k) \) for all \(i \leq k \).

Since \(c_i \) is a prefix code we have:

\[
f(c_{i+1}) \geq f(c_i) + 2^{-l_i}
\]

Thus, we get that the intervals \([f(c_i), f(c_i) + 2^{-l_i}]\) are pairwise disjoint.

By recurrent use of Inequality (2) we obtain:

\[
f(c_m) \geq \sum_{i=1}^{m} 2^{-l_i}
\]

Since, by definition \(f(c_m) \leq 1 \), this proves the first part of the theorem, i.e.

\[
\sum_{i=1}^{m} 2^{-l_i} \leq 1
\]

We have seen that a necessary condition for a code \(\{c_i\} \) to be prefix is that the intervals \([f(c_i), f(c_i) + 2^{-l_i}]\) are pairwise disjoint. The proof of the second part of the theorem is based upon the claim that this condition is also sufficient:

Lemma 1 Given a code \(\{c_i\} \) such that the intervals \([f(c_i), f(c_i) + 2^{-l_i}]\) are disjoint, the code is prefix.

Remark 2 In the following proof we use the fact that in order to prove \(A \Rightarrow B \) one can show that \(B^c \Rightarrow A^c \) (i.e. not \(B \) \(\Rightarrow \) not \(A \)).

Proof: We conversly assume that the code \(\{c_i\} \) is not prefix. If it is so, we can find two codewords \(c_m \) and \(c_n \) (without loss of generality we assume \(m > n \) thus \(l_m > l_n \)), for which the first \(|c_n| \) bits of \(c_m \) are identical to the bits of \(c_n \). In this case:

\[
f(c_m) = \sum_{j=1}^{l_m} c_{m,j} \cdot 2^{-j} = \sum_{j=1}^{l_n} c_{n,j} \cdot 2^{-j} + \sum_{j=l_n+1}^{l_m} c_{m,j} \cdot 2^{-j} < f(c_n) + 2^{-l_n}
\]
So we get that \(f(c_m) < f(c_n) + 2^{-ln} \), contradictly to the fact that the intervals \([f(c_n), f(c_n) + 2^{-ln}]\) and \([f(c_m), f(c_m) + 2^{-lm}]\) are pairwise disjoint. Thus the code is prefix.

Proof: of (ii):

Assume that the lengths \(\{ l_i \} \) are given and satisfy Kraft’s inequality (1). We prove that we can find a prefix code with the given lengths. Without loss of generality, assume that \(l_1 \leq l_2 \leq \ldots \). We define the word \(c_i \) to be the inverse image under the mapping \(f \) of the number \(\sum_{j=1}^{i-1} 2^{-b_j} \), i.e. \(c_i \) is the only word (up to addition of zeroes from the right) such that the equality

\[
f(c_i) = \sum_{j=1}^{i-1} 2^{-b_j}
\]

holds.

To calculate \(c_i \) we use the function \(f^{-1} : [0, 1] \rightarrow c_i \). In order to justify that use we first show that \(0 < f(c_i) \leq 1 \).

From the structure of \(f(c_i) \) it is easy to see that \(f(c_i) > 0 \) for every \(i \). Moreover, using the assumption of the theorem (i.e. inequality (1)) we get that

\[
f(c_i) = \sum_{j=1}^{i-1} 2^{-b_j} \leq 1
\]

for every \(i \). Thus we get that \(0 < f(c_i) \leq 1 \).

Next show that the length of every codeword \(c_i \) that is built this way is indeed no longer than \(l_i \).

Again from the structure of \(f(c_i) \), it is simple to see that the maximal number of bits needed for the codeword \(c_i \) is \(l_{i-1} \) bits. Because we assume that the lengths are arranged by rising order (i.e. \(l_{i-1} \leq l_i \) for every \(i \)), the length of each codeword \(c_i \) cannot be longer than \(|c_i| = l_i \). If it is shorter, we add zeroes from the right up to the wanted length.

To complete the proof, it is enough to show that the intervals

\[
I_i = [f(c_i), f(c_i) + 2^{-l_i}) = \left[\sum_{j=1}^{i-1} 2^{-b_j}, \sum_{j=1}^{i} 2^{-b_j} \right]
\]

are pairwise disjoint and finally use Lemma 1.
Since by definition, \(f(c_i) \) increases as \(i \) increases and the right border of the interval \(I_i \) is the left border of the interval \(I_{i+1} \), the intervals \(\{I_i\} \) are pairwise disjoint, which concludes the proof.