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Introduction to Information Theory

Lecture 2

Lecturer: Haim Permuter Scribe: Morag Agmon, Tirza Routtenberg and Dor Tsur

I. Convexity

Definition 1 (Convex set) A set is convex if for every pair of points within the set,
the whole straight line segment that joins them is also within the set.
In other words, let A be a set in a real or complex vector space. The set A is said

to be convex if, for all x1 ∈ A and x2 ∈ A and for all λ in the interval [0, 1], the point
x3 = λx1 + λ̄x2 is in A (i.e., x3 ∈ A), where λ̄ = 1− λ.

Example 1 (Convex sets) Examine the sets illustrated in Fig. 2. Part (a) illus-
trates a convex set while Part (b) illustrates a non-convex set.

(a) (b)

Fig. 1. (a) A convex set (b) a non-convex set

Example 2 (Convexity of a probability vector space) Show that the probabil-
ity vector space is a convex set.
Answer: Consider a random variable X with alphabet X = 1, ..., k. The probability
vector space PX = [PX (1) , PX (2) , ..., PX (k)] ∈ R

k, is the set of all vectors for which

PX (i) ≥ 0 ∀i ∈ X , and
∑K

i=1 PX (i) = 1. Now consider two probability vectors P
(1)
X

and P
(2)
X , and the vector

P
(3)
X = λP

(1)
X + λ̄P

(2)
X . (1)

We need to show that P
(3)
X is a probability vector. Since,

∑K

i=1 P
(3)
X (i) = 1 and

P
(3)
X (i) ≥ 0 ∀i ∈ X , indeed P

(3)
X is a probability vector. Thus, the probability

vector space is a convex set.

Definition 2 (Convex function.) Let f(x) be a function of the form f : Rn 7→ R,
where R is the set of real numbers and R

n is an n dimensional real vector, hence
x ∈ R

n. A function f (x) is a convex function if

f
(

λx1 + λ̄x2

)

≤ λf (x1) + λ̄f (x2) (2)
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for all x1, x2 in its domain, and for all λ ∈ [0, 1]. A function is a strictly convex
function if

f
(

λx1 + λ̄x2

)

< λf (x1) + λ̄f (x2) (3)

for all x1, x2 in its domain, and for all λ ∈ (0, 1).

Definition 3 (Concave function) A function f (x) is said to be (strictly) concave
function if and only if (−f (x)) is (strictly) convex.

Example 3 (Convex/Concave functions) Examples of convex functions include
x2, |x|, ex, and so on. Examples of concave functions include log x and

√
x for x > 0.

Note that linear functions ax+ b are both convex and concave. Figure 2 shows some
examples of convex and concave functions.

(a) (b)

Fig. 2. (a) A convex function – e
x (b) a concave function – log x

Lemma 1 (operations that preserve convexity) 1. addition of functions Let f1
and f2 be two convex functions, then f1 + f2 is also a convex function.
2. matrix multiplication of the argument Let f : Rn 7→ R and A ∈ R

m×n a matrix of
dimension m× n. Then f(Ax) is also convex.

Exercise 1 Prove Lemma 1 using the definition of convex functions.

Lemma 2 (Second derivative test for scalar functions) Given a scalar function
f (x), i.e., f : R 7→ R, where the second derivative exists we have

∀x ∈ (a, b),
d2f (x)

dx2
≥ 0 ⇐⇒ f (x) is convex, (4)

and similarly

∀x ∈ (a, b),
d2f (x)

dx2
≤ 0 ⇐⇒ f (x) is concave. (5)

In case we have strict inequality, then we have strict convexity, i.e.,

∀x ∈ (a, b),
d2f (x)

dx2
> 0 ⇐⇒ f (x) is stricktly convex. (6)
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and similarly for concave function.

Proof: First, we are proving one direction for the convexity (4), namely that if
the derivative is non-negative it implies convexity. Then, proving the same direction
for concavity in Eq. (5), namely, if the second derivative is non-positive it implies
concavity, is similar. Finally, note that both direction complement each other to if
and only if. In particular for (4) if the derivative is negative for some (arbitrary)
small interval it implies that its not convex hence this complete the second direction.
We use the Taylor series expansion of the function around x0:

f (x) = f (x0) + f ′ (x0) (x− x0) + f ′′ (x∗)
(x∗ − x0)

2

2
, (7)

where x∗ lies between x0 and x. By hypothesis, f ′′ (x∗) ≥ 0, and thus the last term
in (7) is nonnegative for all x, i.e.,

f (x) ≥ f (x0) + f ′ (x0) (x− x0) . (8)

We let x0 = λx1 + λ̄x2, and take x = x1, to obtain

f (x1) ≥ f (x0) + f ′ (x0)
(

x1 − λx1 − λ̄x2

)

= f (x0) + λ̄f ′ (x0) (x1 − x2) . (9)

Similarly, taking x = x2, we obtain

f (x2) ≥ f (x0) + λf ′ (x0) (x2 − x1) . (10)

Multiplying (9) by λ and (10) by λ̄ and adding, we obtain (2). The proof for strict
convexity proceeds along the same lines.

Example 4 (Showing convexity using second derivative test) Consider the func-
tion f (x) = x log x x > 0. Then,

f ′ (x) = log x+ 1

f ′′ (x) =
1

x
> 0. (11)

Thus, f (x) is a convex function.

Lemma 2 on second derivative of scalar function can be extended to multivariate
function (function of more than one variable, such as f(x1, x2).

Lemma 3 (Condition for convexity of multivariate function) A function of sev-
eral variables (multivariate function) is convex if and only if its Hessian matrix is
positive semidefinite. For example, consider R

2 space, then the Hessian matrix can
be written as

[

∂2f

∂x2

1

∂2f

∂x1∂x2

∂2f

∂x2∂x1

∂2f

∂x2

2

]

≥ 0 (12)

Recall, that a square matrix A of dimension n× n is semidefinite (i.e., A ≥ 0) if for
any vector x of length n, xTAx ≥ 0, where xT is the transpose of x.
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II. Jensen’s inequality and its consequences

Theorem 1 (Jensen’s inequality) Let X be a random variable and f (x) a convex
function. Then

E [f (X)] ≥ f (E [X ]) , (13)

and the inequality is reversed if f (x) is concave.
Moreover, if f is strictly convex, equality in (13) implies that X is deterministic, i.e.,
X = E[X ] with probability 1.

proof Assume for simplicity that the random variable gets two values in probabilities
p1 and p2 (where p1 + p2 = 1). Then, using the convex function definition (2):

p1f (x1) + p2f (x2) ≥ f (p1x1 + p2x2) (14)

Exercise 2 Prove (generalize) Jensen’s inequality for arbitrary number n of prob-
abilities pn by induction. By convexity definition, the statement is true for n = 2.
Suppose it is true also for some n, then prove it for n+ 1.

Exercise 3 Prove that for a strictly convex function f , E [f (X)] = f (E [X ]) implies
that X is deterministic. (Hint: assume that X is not deterministic - and show a
contradiction).

The proof of Jensen’s inequality presented above holds for any discrete random vari-
able with finite alphabet. However, Jensen’s inequality holds for any random variable,
not necessarily with finite alphabet, such as continues random variable or a mixture
of discrete and continuous random variable. An alternative proof is presented in the
appendix (at the end of this lecture) and it does not assume that the random variable
is discrete. However, it does use some convex analysis tools.

Theorem 2 (Non-negativity of D (P||Q)) Let P (x) and Q(x) be two probability
functions. Then

D (P ||Q) ≥ 0 (15)

with equality if and only if P (x) = Q (x) for all x.

proof

−D (P ||Q) = −
∑

x

P (x) log
P (x)

Q (x)

= EP

[

log
Q (x)

P (x)

]

(a)

≤ log

(

EP

[

Q (x)

P (x)

])

= log

(

∑

x

P (x)
Q (x)

P (x)

)
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= 0 (16)

where step (a) follows from Jensen’s inequality and the fact that log is a concave
function. Thus,

D (P ||Q) ≥ 0 (17)

Exercise 4 Prove that if D (P ||Q) = 0, then P = Q. Hint: log (x) is a strictly
concave function.

Corollary 1 (Non-negativity of mutual information.) For any two random vari-
ables, X and Y ,

I (X ; Y ) ≥ 0 (18)

proof We saw that I (X ; Y ) = D (PXY ||PXPY ), and since D (PXY ||PXPY ) ≥ 0 with
equality if and only if X ⊥⊥ Y it follows that I(X ; Y ) ≥ 0 and is equal to zero if and
only if P (x, y) = P (x)P (y) for all x ∈ X and y ∈ Y .

Exercise 5 Prove Corollary 1 using Theorem 2. (The proof is provided above, but
as an exercise prove it without looking at the proof).

Corollary 2 (Upper bound on Entropy) Let X be a random variable with al-
phabet X . Then,

H (X) ≤ log |X | (19)

with equality if and only if X has a uniform distribution.

proof Let U (x) = 1
|X |

be the uniform probability function over X , and let P (x) be

the probability function for X . Then

0
(a)

≤ D (P ||U) =
∑

P (x) log
P (x)

U (x)
= log |X | −H (X) , (20)

where inequality (a) follows from Theorem 2. Thus,

H (X) ≤ log |X | (21)

Theorem 3 (Conditioning reduces entropy)

H (X|Y ) ≤ H (X) (22)

with equality if and only if X ⊥⊥ Y .

Intuitively, the theorem says that knowing another random variable Y can only re-
duces the uncertainty in X . Note that this is true only on the average.

Exercise 6 Prove Theorem 3.
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III. Convexity of the Divergence function

In this section we prove the convexity property of the divergence function, which will
later help us prove the concavity of the Entropy function and some concave/convex
property of the mutual information. We will introduce two different ways to prove
the following theorem:

Theorem 4 (Convexity of divergence) The function D(P ||Q) is convex in the
pair (P,Q); i.e. if (P1, Q1) and (P2, Q2) are two pairs of probability mass functions
(PMF), then

D (λP1 + (1− λ)P2||λQ1 + (1− λ)Q2) ≤ λD (P1||Q1) + (1− λ)D (P2||Q2) (23)

for all λ ∈ [0, 1].

A. The Log-Sum Inequality

The first way to prove this theorem uses a simple consequence of the concavity of
the logarithm function (the proof appears in [1, Ch 2.7])

Theorem 5 (Log sum inequality) For ai ≥ 0, bi ≥ 0, i = 1, . . . , n:

n
∑

i=1

ai log

(

ai

bi

)

≥
(

n
∑

i=1

ai

)

log

(∑n

i=1 ai
∑n

i=1 bi

)

(24)

with equality iff ai
bi
= const.

proof
• For

∑

i ai = 0 or
∑

i bi = 0 the proof is trivial (recall that 0 log 0 = 0, 0 log 0
0
= 0).

• Let assume that
∑

i ai > 0 and
∑

i bi > 0. The function f(x) = x log(x) is strictly
convex for all x > 0 (see Example 4). Using Jensen’s inequality:

n
∑

i=1

αif(xi) ≥ f

(

n
∑

i=1

αixi

)

(25)

or
n
∑

i=1

αixi log (xi) ≥
(

n
∑

i=1

αixi

)

log

(

n
∑

i=1

αixi

)

(26)

for all αi ≥ 0, i = 1, . . . , n and
∑n

i=1 αi = 1.
Setting

αi =
bi

∑n

i=1 bi

and
xi =

ai

bi
,
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one obtains the log sum inequality (note that under our assumption it can be seen
that αi, xi ≥ 0 and that

∑n

i=1 αi = 1)).

Exercise 7 Using the log-sum inequality (Theorem 5) show that for any two vector-
probabilities P and Q the divergence is non negative, i.e., D(P ||Q) ≥ 0 and is zero if
and only if P = Q.

We now prove the convexity of divergence, i.e., Theorem 4, using the Log-Sum In-
equality, i.e., Theorem 5.
proof (Theorem 4) Let P1 = [p1,1, p1,2, ..., p1,m] and similarly P2 = [p2,1, p2,2, ..., p2,m],
Q1 = [q1,1, q1,2, ..., q1,m], and Q2 = [q2,1, q2,2, ..., q2,m]. Let us consider 1 ≤ i ≤ m. By
substituting a1 = λp1,i, a2 = (1− λ)p2,i, b1 = λq1,i and b2 = (1− λ)q2,i in the log sum
inequality in (24), we obtain

λp1,i log

(

p1,i

q1,i

)

+(1−λ)p2,i log

(

p2,i

q2,i

)

≥ (λp1,i + (1− λ)p2,i) log

(

λp1,i + (1− λ)p2,i
λq1,i + (1− λ)q2,i

)

.

(27)
Since (27) holds for all 1 ≤ i ≤ m its also true if we sum the left hand side and the
right hand side over 1 ≤ i ≤ m and the summation yields (23).

B. The Perspective Transform

For the alternative way to prove the convexity of the relative entropy we introduce
an operation which preserves convexity:

Theorem 6 (Perspective transform preserve convexity) If f(x) is convex in
x, then tf(x

t
) is convex in (x, t), for t≥ 0.

The proof of this theorem can be found in Appendix B of this lecture.
Alternative proof of (Theorem 4): Divergence is defined as:

D (P ||Q) =
∑

x

P (x) log
P (x)

Q (x)
(28)

we know that − logQ is a convex function in Q. using the perspective transform with
t = P (probability vectors are non-negative) we get that −P log Q

P
is convex is (Q,P).

We can also observe that:

−P (x) log
Q(x)

P (x)
= P (x) log

P (x)

Q(x)
(29)

Because D (P ||Q) is a non-negative sum of elements of this form, which we have
shown that are convex, we conclude that it is convex in (P,Q)

Example:
• D(PX ||U) is convex for any probability function PX where U is the uniform distri-
bution on |X|.
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IV. Convexity and Concavity properties of Entropy and Mutual
Information

Theorem 7 (concavity of entropy) H(PX) is a concave function of PX .

proof We can write entropy in terms of divergence as

H(PX) = log |X | −D(PX ||U),

where U is the uniform distribution on |X | outcomes. H is concave function because
D is convex and |X | is a constant with respect to PX .

Let us present an alternative proof for this theorem based on the fact that conditioning
does not increase entropy.
alternative proof (Theorem 7) Let define the following random variable:

θ =

{

1 with probability λ

2 with probability 1− λ
(30)

and P (x|θ = 1) = P 1(x), P (x|θ = 2) = P 2(x). Thus P (x) = λP 1(x) + (1− λ)P 2(x).
It can be seen that for this problem

H(X) = H(PX) = H(λP 1(x) + (1− λ)P 2(x)) (31)

H(X|θ) = λH(X|θ = 1) + (1− λ)H(X|θ = 2) = λH(P 1
X) + (1− λ)H(P 2

X) . (32)

By substituting (31)-(32) in the following inequality

H(X) ≥ H(X|θ), (33)

we obtain that H(PX) is concave function as a function of the distribution, PX .

Exercise 8 Prove that D(p||q) is convex in p for a fixed q and similarly convex in q

for a fixed p.

Theorem 8 (Convexity and concavity of the mutual information) The follow-
ing holds:
1. The mutual information I(X ; Y ) is a concave function of PX for fixed PY |X

2. The mutual information I(X ; Y ) is a convex function of PY |X for fixed PX .

Interpretation: For given (constant) system we can maximize the input such that the
information will be maximized. For given input we can minimize the system (channel)
such that the information will be maximized.
proof
Part 1: This part is proven by the concavity of entropy. By definition:

I(X ; Y ) = H(Y )−H(Y |X) = H(Y )−
∑

x∈χ

P (x)H(Y |X = x). (34)
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According to Bayes rule:

P (y) =
∑

x∈χ

P (y|x)P (x). (35)

Thus, if PY |X is fixed, PY is a linear function of PX . Furthermore H(Y ) is a concave
function of PY ( Theorem 7). Because of the linear relation between PY and PX it
follows that H(Y ) is a concave function of PX . In addition,

∑

x∈χ

P (x)H(Y |X = x) is

also linear function of PX . Hence, the difference is a concave function of PX .

Part 2: This part is proven by the convexity of the divergence. For given PX we
consider two different joint distributions, P 1

X,Y , P
2
X,Y with the corresponding condi-

tional distributions, P 1
Y |X and P 2

Y |X and marginal distributions, P 1
Y , P

2
Y . We define1

P λ
Y |X , λP 1

Y |X + (1− λ)P 2
Y |X , 0 ≤ λ ≤ 1 (36)

and

P 1
X,Y , PXP

1
Y |X , (37)

P 2
X,Y , PXP

2
Y |X , (38)

P λ
X,Y , PXP

λ
Y |X , (39)

(40)

Using this definition, it can be seen that for all x ∈ X and y ∈ Y :

P λ(x, y) = λP 1(x, y) + (1− λ)P 2(x, y), (41)

P λ(y) = λP 1(y) + (1− λ)P 2(y). (42)

Lets define

Qλ(x, y) , P (x)P λ(y), 0 ≤ λ ≤ 1

Q1(x, y) , P (x)P 1(y),

Q2(x, y) , P (x)P 2(y),

(43)

Then,
Qλ(x, y) = λQ1(x, y) + (1− λ)Q2(x, y), 0 ≤ λ ≤ 1. (44)

Let us define Iλ(X ; Y ) to be the mutual information induced by P λ
Y |XPX and I1(X ; Y )

and I2(X ; Y ), the mutual information induced by P 1
Y |XPX and P 2

Y |XPX , respectively.
We need to show that

Iλ(X ; Y ) ≤ λI1(X ; Y ) + (1− λ)I2(X ; Y ). (45)

1Note that Pλ

Y |X is also a conditional distribution measure.
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To prove this consider the following:

Iλ(X ; Y ) = D(P λ
X,Y ||Qλ

X,Y )

(a)
= D(λP 1

X,Y + (1− λ)P 2
X,Y ||λQ1

X,Y + (1− λ)Q2
X,Y )

(b)

≤ λD(P 1
X,Y ||Q1

X,Y ) + (1− λ)D(P 2
X,Y ||Q2

X,Y )

= λI1(X ; Y ) + (1− λ)I2(X ; Y ). (46)

where (a) follows the definition of P λ
X,Y and Qλ

X,Y and (b) follows from the convexity
of divergence (Theorem 4).

Appendix

I. Alternative proof of Theorem 1 (Jensen’s inequality)

Before starting the proof let us state a lemma from convex analysis that we use.
Let L denote a set of all linear functions that are below φ(x), i.e.,

L = {(a, b) : ax+ b ≤ φ(x), ∀x}. (47)

Lemma 4 (Alternative representation of a convex function) A convex func-
tion φ(x) equals the supremum over all linear function l(x) = ax + b that satisfies
ax+ b ≤ φ(x) for all x. In other words

φ(x) = sup
(a,b)∈L

{ax+ b}. (48)

proof (Theorem 1) (Jensen’s inequality)
We need to prove that if φ(x) is convex then Eφ(x) ≥ φ(E[x]). Let L be defined as
in (47). Now, choose a specific (a, b) ∈ L. We have from the definition

φ(x) ≥ ax+ b, ∀x. (49)

Whenever we have two random variable that satisfy U ≥ V , then E[U ] ≥ E[V ]. Hence

Eφ(x) ≥ E[ax+ b], (50)

and from the linearity of expectation we obtain that

Eφ(x) ≥ aE[x] + b. (51)

Equation (51) holds for all (a, b) ∈ L, hence

Eφ(x) ≥ sup
(a,b)∈L

aE[x] + b. (52)
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Finally, follows from Lemma 4 that sup(a,b)∈L aE[x] + b = φ(E[x]), and therefore

Eφ(x) ≥ φ(E[x]). (53)

II. proof of Theorem 6 (Perspective transform preserve convexity)

Let f(x), f : R → R be some convex of x. Let us define g(x, t) , tf(x
t
). Now, we

can check the condition for convexity of g in (x, t): Let (x1, t1), (x2, t2) ∈ dom(f)

g(λ(x1, t1) + λ̄(x2, t2)) = (λt1 + λ̄t2)f

(

λt1(
x1

t1
) + λ̄t2(

x2

t2
)

λt1 + λ̄t2

)

≤ (λt1 + λ̄t2)

(

λt1

λt1 + λ̄t2
f

(

x1

t1

)

+
λ̄t2

λt1 + λ̄t2
f

(

x2

t2

))

= λt1f

(

x1

t1

)

+ λ̄t2f

(

x2

t2

)

= λg(x1, t1) + λ̄g(x2, t2) (54)

So, g(x, t) satisfies the convexity definition, and therefore a convex function in (x, t)
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