I. Convexity

Definition 1 (Convex set) A set is convex if for every pair of points within the set, the whole straight line segment that joins them is also within the set.

In other words, let \mathcal{A} be a set in a real or complex vector space. The set \mathcal{A} is said to be convex if, for all $x_1 \in \mathcal{A}$ and $x_2 \in \mathcal{A}$ all λ in the interval $[0, 1]$, the point $x_3 = \lambda x_1 + \bar{\lambda} x_2$ is in \mathcal{A} (i.e., $x_3 \in \mathcal{A}$), where $\bar{\lambda} = 1 - \lambda$.

Example 1 (Convex sets) Examine the sets illustrated in Fig. 2. Part (a) illustrates a convex set while Part (b) illustrates a non-convex set.

![Fig. 1. (a) A convex set (b) a non-convex set](image)

Example 2 (Convexity of a probability vector space) Show that the probability vector space is a convex set.

Answer: Consider a random variable X with alphabet $\mathcal{X} = 1, \ldots, k$. The probability vector space $P_X = [P_X(1), P_X(2), \ldots, P_X(k)] \in \mathbb{R}^k$, is the set of all vectors for which $P_X(i) \geq 0 \forall i \in \mathcal{X}$, and $\sum_{i=1}^{K} P_X(i) = 1$. Now consider two probability vectors $P_X^{(1)}$ and $P_X^{(2)}$, and the vector

$$P_X^{(3)} = \lambda P_X^{(1)} + \bar{\lambda} P_X^{(2)}.$$ \hspace{1cm} (1)

We need to show that $P_X^{(3)}$ is a probability vector. Since, $\sum_{i=1}^{K} P_X^{(3)}(i) = 1$ and $P_X^{(3)}(i) \geq 0 \forall i \in \mathcal{X}$, indeed $P_X^{(3)}$ is a probability vector. Thus, probability vector space is a convex set.
Definition 2 (Convex function.) Let \(f(x) \) be a function of the form \(f: \mathbb{R}^n \mapsto \mathbb{R} \), where \(\mathbb{R} \) is the set of real numbers and \(\mathbb{R}^n \) is an \(n \) dimensional real vector, hence \(x \in \mathbb{R}^n \). A function \(f(x) \) is a convex function if

\[
f(\lambda x_1 + \bar{\lambda} x_2) \leq \lambda f(x_1) + \bar{\lambda} f(x_2)
\]

for all \(x_1, x_2 \) in its domain, and for all \(\lambda \in [0, 1] \). A function is a strictly convex function if

\[
f(\lambda x_1 + \bar{\lambda} x_2) < \lambda f(x_1) + \bar{\lambda} f(x_2)
\]

for all \(x_1, x_2 \) in its domain, and for all \(\lambda \in (0, 1) \).

Definition 3 (Concave function) A function \(f(x) \) is said to be (strictly) concave function if and only if \((-f(x))\) is (strictly) convex.

Example 3 (Convex/Concave functions) Examples of convex functions include \(x^2 \), \(|x|\), \(e^x \), and so on. Examples of concave functions include \(\log x \) and \(\sqrt{x} \) for \(x > 0 \). Note that linear functions \(ax + b \) are both convex and concave. Figure 2 shows some examples of convex and concave functions.

(a) \hspace{1cm} (b)

![Fig. 2. (a) A convex function – \(e^x \) (b) a concave function – \(\log x \)]

Lemma 1 (operations that preserve convexity) 1. addition of functions Let \(f_1 \) and \(f_2 \) be two convex functions, then \(f_1 + f_2 \) is also a convex function.

2. matrix multiplication of the argument Let \(f: \mathbb{R}^n \mapsto \mathbb{R} \) and \(A \in \mathbb{R}^{m \times n} \) a matrix of dimension \(m \times n \). Then \(f(Ax) \) is also convex.

Exercise 1 Prove Lemma 1 using the definition of convex functions.

Lemma 2 (Second derivative test for scalar functions) Given a scalar function \(f(x) \), i.e., \(f: \mathbb{R} \mapsto \mathbb{R} \), with non-negative (positive) second derivative over some interval \((a, b)\), then \(f(x) \) is convex (strictly convex) over this interval, i.e.,
\[\forall x \in (a, b), \quad \frac{d^2 f(x)}{dx^2} \geq 0 \iff f(x) \text{ is convex.} \quad (4) \]

Similarly, \(\forall x \in (a, b), \quad \frac{d^2 f(x)}{dx^2} \leq 0 \iff f(x) \text{ is concave.} \quad (5) \]

Proof: We use the Taylor series expansion of the function around \(x_0 \):

\[
f(x) = f(x_0) + f'(x_0)(x - x_0) + f''(x^*) \frac{(x^* - x_0)^2}{2}, \quad (6)
\]

where \(x^* \) lies between \(x_0 \) and \(x \). By hypothesis, \(f''(x^*) \geq 0 \), and thus the last term in (6) is nonnegative for all \(x \), i.e.,

\[
f(x) \geq f(x_0) + f'(x_0)(x - x_0). \quad (7)
\]

We let \(x_0 = \lambda x_1 + \bar{\lambda} x_2 \), and take \(x = x_1 \), to obtain

\[
f(x_1) \geq f(x_0) + f'(x_0) (x_1 - \lambda x_1 - \bar{\lambda} x_2)
= f(x_0) + \bar{\lambda} f'(x_0) (x_1 - x_2). \quad (8)
\]

Similarly, taking \(x = x_2 \), we obtain

\[
f(x_2) \geq f(x_0) + \lambda f'(x_0) (x_2 - x_1). \quad (9)
\]

Multiplying (8) by \(\lambda \) and (9) by \(\bar{\lambda} \) and adding, we obtain (2). The proof for strict convexity proceeds along the same lines. \[\blacksquare \]

Example 4 (Showing convexity using second derivative test) Consider the function \(f(x) = x \log x \quad x > 0 \). Then,

\[
f'(x) = \log x + 1
f''(x) = \frac{1}{x} > 0. \quad (10)
\]

Thus, \(f(x) \) is a convex function.

Lemma 2 on second derivative of scalar function can be extended to multivariate function (function of more than one variable, such as \(f(x_1, x_2) \)).

Lemma 3 (Condition for convexity of multivariate function) A function of several variables (multivariate function) is convex if and only if its Hessian matrix is positive semidefinite. For example, consider \(\mathbb{R}^2 \) space, then the Hessian matrix can be written as

\[
\begin{bmatrix}
\frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} \\
\frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2}
\end{bmatrix} \geq 0 \quad (11)
\]

Recall, that a square matrix \(A \) of dimension \(n \times n \) is *semidefinite* (i.e., \(A \succeq 0 \)) if for any vector \(\mathbf{x} \) of length \(n \), \(\mathbf{x}^T A \mathbf{x} \geq 0 \), where \(\mathbf{x}^T \) is the transpose of \(\mathbf{x} \).
II. JENSEN’S INEQUALITY AND ITS CONSEQUENCES

Theorem 1 (Jensen’s inequality) Let \(X \) be a random variable and \(f(x) \) a convex function. Then

\[
\mathbb{E}[f(X)] \geq f(\mathbb{E}[X]),
\]

and the inequality is reversed if \(f(x) \) is concave.

Moreover, if \(f \) is strictly convex, equality in (12) implies that \(X \) is deterministic, i.e., \(X = E[X] \) with probability 1.

Proof: Assume for simplicity that the random variable gets two values in probabilities \(p_1 \) and \(p_2 \) (where \(p_1 + p_2 = 1 \)). Then, using the convex function definition (2):

\[
p_1 f(x_1) + p_2 f(x_2) \geq f(p_1 x_1 + p_2 x_2) \tag{13}
\]

Exercise 2 Prove (generalize) Jensen’s inequality for arbitrary number \(n \) of probabilities \(p_n \) by induction. By convexity definition, the statement is true for \(n = 2 \). Suppose it is true also for some \(n \), then prove it for \(n + 1 \).

Exercise 3 Prove that for a strictly convex function \(f \), \(\mathbb{E}[f(X)] = f(\mathbb{E}[X]) \) implies that \(X \) is deterministic.

The proof of Jensen’s inequality presented above holds for any discrete random variable with finite alphabet. However, Jensen’s inequality holds for any random variable, not necessarily with finite alphabet, such as continues random variable or a mixture of discrete and continuous random variable. An alternative proof is presented in the appendix (at the end of this lecture) and it does not assume that the random variable is discrete. However it does use some convex analysis tools.

Theorem 2 (Non-negativity of \(D(P||Q) \)) Let \(P(x) \) and \(Q(x) \) be two probability functions. Then

\[
D(P||Q) \geq 0 \tag{14}
\]

with equality if and only if \(P(x) = Q(x) \) for all \(x \).

Proof:

\[
-D(P||Q) = -\sum_x P(x) \log \frac{P(x)}{Q(x)} \\
= \mathbb{E}_P \left[\log \frac{Q(x)}{P(x)} \right] \\
\leq \log \left(\mathbb{E}_P \left[\frac{Q(x)}{P(x)} \right] \right) \\
= \log \left(\sum_x P(x) \frac{Q(x)}{P(x)} \right) \\
= 0 \tag{15}
\]
where step (a) follows from Jensen’s inequality and the fact that log is a concave function. Thus,

\[D(P||Q) \geq 0 \]

Exercise 4 Prove that if \(D(P||Q) = 0 \), then \(P = Q \). Hint: \(\log(x) \) is a strictly concave function.

Corollary 1 (Non-negativity of mutual information.) For any two random variables, \(X \) and \(Y \),

\[I(X;Y) \geq 0 \]

Proof: We saw that \(I(X;Y) = D(P_{XY}||P_XP_Y) \), and since \(D(P_{XY}||P_XP_Y) \geq 0 \) with equality if and only if \(X \perp Y \) it follows that \(I(X;Y) \geq 0 \) and is equal to zero if and only if \(P(x, y) = P(x)P(y) \) for all \(x \in \mathcal{X} \) and \(y \in \mathcal{Y} \).

Exercise 5 Prove Corollary 1 using Theorem 2.

Corollary 2 (Upper bound on Entropy) Let \(X \) be a random variable with alphabet \(\mathcal{X} \). Then,

\[H(X) \leq \log |\mathcal{X}| \]

with equality if and only if \(X \) has a uniform distribution.

Proof: Let \(U(x) = \frac{1}{|\mathcal{X}|} \) be the uniform probability function over \(\mathcal{X} \), and let \(P(x) \) be the probability function for \(X \). Then

\[0 \leq D(P||U) = \sum P(x) \log \frac{P(x)}{U(x)} = \log |\mathcal{X}| - H(X) , \]

where inequality (a) follows from Theorem 2. Thus,

\[H(X) \leq \log |\mathcal{X}| \]

Theorem 3 (Conditioning reduces entropy)

\[H(X|Y) \leq H(X) \]

with equality if and only if \(X \perp Y \).

Intuitively, the theorem says that knowing another random variable \(Y \) can only reduces the uncertainty in \(X \). Note that this is true only on the average.

Exercise 6 Prove Theorem 3.
III. Log sum inequality

Theorem 4 (Log sum inequality) For \(a_i \geq 0, b_i \geq 0, \quad i = 1, \ldots, n \):

\[
\sum_{i=1}^{n} a_i \log \left(\frac{a_i}{b_i} \right) \geq \left(\sum_{i=1}^{n} a_i \right) \log \left(\frac{\sum_{i=1}^{n} a_i}{\sum_{i=1}^{n} b_i} \right) \tag{22}
\]

with equality iff \(\frac{a_i}{b_i} = \text{const} \).

Proof:
- For \(\sum_i a_i = 0 \) or \(\sum_i b_i = 0 \) the proof is trivial (recall that \(0 \log 0 = 0, 0 \log \frac{0}{0} = 0 \)).
- Let assume that \(\sum_i a_i > 0 \) and \(\sum_i b_i > 0 \). The function \(f(x) = x \log(x) \) is strictly convex for all \(x > 0 \) (see Example 4). Using Jensen’s inequality:

\[
\sum_{i=1}^{n} \alpha_i f(x_i) \geq f\left(\sum_{i=1}^{n} \alpha_i x_i \right) \tag{23}
\]

or

\[
\sum_{i=1}^{n} \alpha_i x_i \log (x_i) \geq \left(\sum_{i=1}^{n} \alpha_i x_i \right) \log \left(\sum_{i=1}^{n} \alpha_i x_i \right) \tag{24}
\]

for all \(\alpha_i \geq 0, \quad i = 1, \ldots, n \) and \(\sum_{i=1}^{n} \alpha_i = 1 \). Setting

\[
\alpha_i = \frac{b_i}{\sum_{i=1}^{n} b_i}
\]

and

\[
x_i = \frac{a_i}{b_i},
\]

one obtains the log sum inequality (note that under our assumption it can be seen that \(\alpha_i, x_i \geq 0 \) and that \(\sum_{i=1}^{n} \alpha_i = 1 \)).

Exercise 7 Using the log-sum inequality (Theorem 4) show that for any two vector-probabilities \(P \) and \(Q \) the divergence is non negative, i.e., \(D(P||Q) \geq 0 \) and is zero if and only if \(P = Q \).

Theorem 5 (Convexity of divergence) The function \(D(P||Q) \) is convex in the pair \((P, Q) \); i.e. if \((P_1, Q_1) \) and \((P_2, Q_2) \) are two pairs of probability mass functions (PMF), then

\[
D(\lambda P_1 + (1 - \lambda) P_2 || \lambda Q_1 + (1 - \lambda) Q_2) \leq \lambda D(P_1||Q_1) + (1 - \lambda) D(P_2||Q_2) \tag{25}
\]

for all \(\lambda \in [0, 1] \).

Proof: Let \(P_1 = [p_{1,1}, p_{1,2}, \ldots, p_{1,m}] \) and similarly \(P_2 = [p_{2,1}, p_{2,2}, \ldots, p_{2,m}] \), \(Q_1 = [q_{1,1}, q_{1,2}, \ldots, q_{1,m}] \), and \(Q_2 = [q_{2,1}, q_{2,2}, \ldots, q_{2,m}] \). Let us consider \(1 \leq i \leq m \). By
substituting \(a_1 = \lambda_{p_{1,i}}, a_2 = (1 - \lambda)p_{2,i}, b_1 = \lambda_{q_{1,i}}\) and \(b_2 = (1 - \lambda)q_{2,i}\) in the log sum inequality in (22), we obtain

\[
\lambda_{p_{1,i}} \log \left(\frac{p_{1,i}}{q_{1,i}} \right) + (1 - \lambda)p_{2,i} \log \left(\frac{p_{2,i}}{q_{2,i}} \right) \geq (\lambda_{p_{1,i}} + (1 - \lambda)p_{2,i}) \log \left(\frac{\lambda_{p_{1,i}} + (1 - \lambda)p_{2,i}}{\lambda_{q_{1,i}} + (1 - \lambda)q_{2,i}} \right).
\]

Since (26) holds for all \(1 \leq i \leq m\) its also true if we sum the left hand side and the right hand side over \(1 \leq i \leq m\) and the summation yields (25).

Examples:
- \(D(P_X||U)\) is convex for any probability function \(P_X\) where \(U\) is the uniform distribution on \(|X|\).

Theorem 6 (Convexity of entropy) \(H(P_X)\) is a concave function of \(P_X\).

Proof: We can write entropy in terms of divergence as

\[
H(P_X) = \log |X| - D(P_X||U),
\]

where \(U\) is the uniform distribution on \(|X|\) outcomes. \(H\) is concave function because \(D\) is convex and \(|X|\) is a constant with respect to \(P_X\).

Let us present an alternative proof for this theorem based on the fact that conditioning does not increase entropy.

Proof:

Let define the following random variable:

\[
\theta = \begin{cases}
1 \text{ with probability } \lambda \\
2 \text{ with probability } 1 - \lambda
\end{cases} \tag{27}
\]

and \(P(x|\theta = 1) = P^1(x), P(x|\theta = 2) = P^2(x)\). Thus \(P(x) = \lambda P^1(x) + (1 - \lambda)P^2(x)\). It can be seen that for this problem

\[
H(X) = H(P_X) = H(\lambda P^1(x) + (1 - \lambda) P^2(x)) \tag{28}
\]

\[
H(X|\theta) = \lambda H(X|\theta = 1) + (1 - \lambda) H(X|\theta = 2) = \lambda H(P^1_X) + (1 - \lambda) H(P^2_X). \tag{29}
\]

By substituting (28)-(29) in the following inequality

\[
H(X) \geq H(X|\theta), \tag{30}
\]

we obtain that \(H(P_X)\) is concave function as a function of the distribution, \(P_X\).

Exercise 8 Prove that \(D(p||q)\) is convex in \(p\) for a fixed \(q\) and similarly convex in \(q\) for a fixed \(p\).

Theorem 7 (Convexity and concavity of the mutual information) The following holds:
1. The mutual information \(I(X;Y)\) is a concave function of \(P_X\) for fixed \(P_{Y|X}\)
2. The mutual information \(I(X;Y)\) is a convex function of \(P_{Y|X}\) for fixed \(P_X\).
Interpretation: For given (constant) system we can maximize the input such that the information will be maximized. For given input we can minimize the system (channel) such that the information will be maximized.

Proof:
Part 1: This part is proven by the concavity of entropy. By definition:

\[
I(X; Y) = H(Y) - H(Y|X) = H(Y) - \sum_{x \in X} P(x)H(Y|X = x). \tag{31}
\]

According to Bayes rule:

\[
P(y) = P(y|x)P(x). \tag{32}
\]

Thus, if \(P_{Y|X} \) is fixed, \(P_Y \) is a linear function of \(P_X \). Furthermore \(H(Y) \) is a concave function of \(P_Y \) (Theorem 6). Because of the linear relation between \(P_Y \) and \(P_X \) it follows that \(H(Y) \) is a concave function of \(P_X \). In addition, \(\sum_{x \in X} P(x)H(Y|X = x) \) is also linear function of \(P_X \). Hence, the difference is a concave function of \(P_X \).

Part 2: This part is proven by the convexity of the divergence. For given \(P_X \) we consider two different joint distributions, \(P^1_{X,Y}, P^2_{X,Y} \) with the corresponding conditional distributions, \(P^1_{Y|X} \) and \(P^2_{Y|X} \) and marginal distributions, \(P^1_Y, P^2_Y \). We define\(^1\)

\[
P^\lambda_{Y|X} \triangleq \lambda P^1_{Y|X} + (1 - \lambda)P^2_{Y|X}, \quad 0 \leq \lambda \leq 1 \tag{33}
\]

and

\[
P^1_{X,Y} \triangleq P_X P^1_{Y|X}, \tag{34}
\]

\[
P^2_{X,Y} \triangleq P_X P^2_{Y|X}, \tag{35}
\]

\[
P^\lambda_{X,Y} \triangleq P_X P^\lambda_{Y|X}, \tag{36}
\]

Using this definition, it can be seen that for all \(x \in X \) and \(y \in Y \):

\[
P^\lambda(x, y) = \lambda P^1(x, y) + (1 - \lambda)P^2(x, y), \tag{38}
\]

\[
P^\lambda(y) = \lambda P^1(y) + (1 - \lambda)P^2(y). \tag{39}
\]

Lets define

\[
Q^\lambda(x, y) \triangleq P(x)P^\lambda(y), \quad 0 \leq \lambda \leq 1
\]

\[
Q^1(x, y) \triangleq P(x)P^1(y),
\]

\[
Q^2(x, y) \triangleq P(x)P^2(y),
\]

\(^1\)Note that \(P^\lambda_{Y|X} \) is also a conditional distribution measure.
Then,
\[Q^\lambda(x, y) = \lambda Q^1(x, y) + (1 - \lambda) Q^2(x, y), \quad 0 \leq \lambda \leq 1. \quad (41) \]

Let us define \(I^\lambda(X; Y) \) to be the mutual information induced by \(P^\lambda_{Y|X} P_X \) and \(I^1(X; Y) \) and \(I^2(X; Y) \), the mutual information induced by \(P^1_{Y|X} P_X \) and \(P^2_{Y|X} P_X \), respectively. We need to show that
\[I^\lambda(X; Y) \leq \lambda I^1(X; Y) + (1 - \lambda) I^2(X; Y). \quad (42) \]

To prove this consider the following:
\[
I^\lambda(X; Y) = D(P^\lambda_{X,Y} \| Q^\lambda_{X,Y})
\overset{(a)}{=} D(\lambda P^1_{X,Y} + (1 - \lambda) P^2_{X,Y} \| \lambda Q^1_{X,Y} + (1 - \lambda) Q^2_{X,Y})
\overset{(b)}{\leq} \lambda D(P^1_{X,Y} \| Q^1_{X,Y}) + (1 - \lambda) D(P^2_{X,Y} \| Q^2_{X,Y})
= \lambda I^1(X; Y) + (1 - \lambda) I^2(X; Y).
\]

where (a) follows the definition of \(P^\lambda_{X,Y} \) and \(Q^\lambda_{X,Y} \) and (b) follows from the convexity of divergence (Theorem 5).

Appendix

I. **Alternative proof of Theorem 1 (Jensen’s inequality)**

Before starting the proof let us state a lemma from convex analysis that we use. Let \(\mathcal{L} \) denote a set of all linear function that are below \(\phi(x) \), i.e.,
\[
\mathcal{L} = \{(a, b) : ax + b \leq \phi(x), \forall x\}. \quad (44)
\]

Lemma 4 (Alternative representation of a convex function) A convex function \(\phi(x) \) equals the supremum over all linear function \(l(x) = ax + b \) that satisfies \(ax + b \leq \phi(x) \) for all \(x \). In other words
\[
\phi(x) = \sup_{(a,b)\in \mathcal{L}} \{ax + b\}. \quad (45)
\]

proof of Theorem 1 (Jensen’s inequality)

We need to proof that if \(\phi(x) \) is convex then \(\mathbb{E}\phi(x) \geq \phi(\mathbb{E}[x]). \) Let \(\mathcal{L} \) be defined as in (44). Now, choose a specific \((a, b) \in \mathcal{L} \). We have from the definition
\[
\phi(x) \geq ax + b, \ \forall x.
\]

Whenever we have two random variable that satisfies \(U \geq V \), then \(\mathbb{E}[U] \geq \mathbb{E}[V] \). Hence
\[
\mathbb{E}\phi(x) \geq \mathbb{E}[ax + b],
\]

where (a) follows the definition of \(P^\lambda_{X,Y} \) and \(Q^\lambda_{X,Y} \) and (b) follows from the convexity of divergence (Theorem 5).
and from the linearity of expectation we obtain that
\[\mathbb{E}\phi(x) \geq a\mathbb{E}[x] + b. \] (48)

Equation (48) holds for all \((a, b) \in \mathcal{L}\), hence
\[\mathbb{E}\phi(x) \geq \sup_{(a, b) \in \mathcal{L}} a\mathbb{E}[x] + b. \] (49)

Finally, follows from Lemma 4 that \(\sup_{(a, b) \in \mathcal{L}} a\mathbb{E}[x] + b = \phi(\mathbb{E}[x])\), and therefore
\[\mathbb{E}\phi(x) \geq \phi(\mathbb{E}[x]). \] (50)