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Mathematical methods in communication

Lecture 12

Lecturer: Haim Permuter Scribe: Osher Yaari

I. GROUPS

In order to give an exact definition of a group, we first have to understand what a

binary operation is:

Definition 1 (Binary Operation) Let S be a set. abinary operation⊕ on S is a map

⊕ : S × S → S, i.e it is a function (denoted by the symbol ’⊕’) that takes two elements

from the setS and returns another element fromS.

Fora, b ∈ S, we will usually denote the image of the pair(a, b) under the binary operation

⊕ by a ⊕ b, instead of the usual⊕(a, b) notation for functions. Two main properties a

binary operation can possess are:

Definition 2 (Associativity) A binary operation⊕ on the setS is said to beassociative

if for all a, b, c ∈ S we have that(a⊕ b)⊕ c = a⊕ (b⊕ c).

Definition 3 (Commutativity) A binary operation⊕ on the setS is said to becommu-

tative if for all a, b ∈ S we have thata⊕ b = b⊕ a.

When the operation is associative, we can write an expressionsuch asa⊕ b⊕ c without

having to worry about specifying the order of the operations(using parenthesis), since

any such choice would yield the same result. If in addition the operation is commutative,

we may write the elementsa, b, c in any order.

We are now ready for:

Definition 4 (Group) A group (G,⊕) is a setG together with a binary operation⊕ on

G such that:

1) (Closure) For everya, b ∈ G we have thata⊕ b ∈ G

2) (Associativity) The operation⊕ is associative
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3) (Identity) There exist a special elemente ∈ G, called theidentityelement, satisfying

a⊕ e = e⊕ a = a for all a ∈ G

4) (Inverse) For everya ∈ G there existã ∈ G, called theinverseof a, such that

a⊕ ã = ã⊕ a = e.

If in addition we have:

5) (Commutativity) The operation⊕ is commutative

then we say that it is anabelian group(or commutative group)

Notice that demanding property 1 (Closure) in the definition was unnecessary, since it

follows directly from the fact that⊕ is a binary operation onG. Nevertheless, we chose

to include it there in order to emphasize that fact. Usually,the binary operation of a group

is denoted by either′·′ or ′+′. When using multiplicative notation (i.e the′·′ symbol) it

it customary to denote the identity element by1 and the inverse of an elementa by a−1.

When using additive notation (i.e the′+′ symbol) it is customary to denote the identity

element by0 and the inverse of an elementa by −a. Additive notation is generally used

only for abelian groups, whereas multiplicative notation is used for both abelian and

nonabelian groups.

Example 1 (Groups) • The setZ of all integers together with the usual addition

operation is an abelian group. All of the axioms can be easilyverified here. Another

example which is somewhat less trivial is the following:

• The setGL(2,R) of all 2× 2 invertible matrices together with the matrix multipli-

cation operation is a group. First, multiplying two2 × 2 invertible matrices results

in another2 × 2 matrix which is also invertible (why?), so this multiplication is

indeed a binary operation. Second, matrix multiplication is an associative operation

(not trivial but also not hard to verify). Third, the matrixI2 is obviously a2 × 2

invertible matrix who acts as the identity. Finally, every invertible matrix has an

inverse. Notice that this group isnot abelian - one can easily find two matricesA,B

such thatA ·B 6= B · A (try!).

• The setZ of all integers together with the usual multiplication operation is not a

group, since property 4 (Inverse) does not hold here. For example, there is no integer
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a which satisfies2 · a = 1, and so the integer2 does not have an inverse (actually,

the only invertible elements here are1 and−1).

• The setQ of all rational numbers together with the usual multiplication operation is

also not a group, since now the number0 does not have an inverse. However, this

can be fixed:

• The setQ \ {0} of all rational numbers except the number0 together with the usual

multiplication operationis an abelian group.

• For n ∈ N we can take the set of numbers{0, 1, 2, . . . , n− 1} (which we denote by

Zn) together with the operation of addition mod-n. This formes an abelian group,

where for example the identity here is the number0, and the inverse of a number

a is n− a. The same set together with multiplication mod-n will not form a group,

since the number0 is not invertible under multiplication. We can try to fix thisby

removing0 from the set, just like we did withQ:

• The set of numbersZn \{0} = {1, 2, . . . , n−1} together with multiplication mod-n

forms a group if and only ifn is prime (this will be proven in an exercise). For

example, the multiplicative inverse of3 in Z7 \ {0} is 5, while for Z6 \ {0} we have

that 2 · 3 = 0 /∈ Z6 \ {0}.

Definition 5 (Subgroup) Let (G,+G) be a group, and letH ⊆ G be a subset ofG. We

denote by+H the restriction of the operation+G to H (i.e. +H := +G|H×H), and we

say that(H,+H) is a subgroupof (G,+G) If (H,+H) forms a group on it’s on.

For example, the even integers is a subgroup of the group of all integers (when the

operation is, of course, addition). For simplicity, from now on we shall sometimes denote

a group just by the setG without specifying the binary operation, for example when the

specific operation is irrelevant or when it can be understoodfrom the context. Let’s

introduce some more notations: the number of elements of a group (G,+) is denoted by

|G|, and say that the group isfinite if |G| < ∞. For g, h ∈ G we will write g−h instead

of g + (−h) (remember that−h is the inverse ofh). If g ∈ G andn ∈ Z we use the
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notation

ng :=







n times
︷ ︸︸ ︷
g + g + g . . .+ g, if n > 0.

e, if n = 0.
n times

︷ ︸︸ ︷
−g − g − g . . .− g, if n < 0.

(1)

Definition 6 (Cyclic Group) We say that a groupG is cyclic if there exists some element

a ∈ G such that for everyg ∈ G we have thatg = na for somen ∈ Z. In such case we

say thata is a generatorof G.

Example 2 (Cyclic Groups) • The group(Z,+) is cyclic, since1 and also−1 are

generators.

• The group(Z5 \ {0}, ·) is cyclic, since2 for example is a generator.

Definition 7 (Isomorphism of Groups) Let (H,+H), (G,+G) be two groups. A map

Φ : H → G is called anisomorphismbetweenH andG if:

1) Φ is bijective (i.e. one-to-one and onto)

2) For all a, b ∈ H we have thatΦ(a+H b) = Φ(a) +G Φ(b).

If there exists an isomorphism between two groups we say thatthose groups are

isomorphic.

Theorem 1 Let G be a finite cyclic group withn = |G| elements. ThenG is isomorphic

to the groupZn.

II. F IELDS

Definition 8 (Field) A field (F,+, ·) is a setF together with two binary operations+

and · on F such that:

1) (F,+) is an abelian group.

2) (F \ {0}, ·) is an abelian group1.

3) (Distributivity) For all a, b, c ∈ F we have thata · (b+ c) = (a · b) + (a · c)

1Strictly speaking, we should require that(F \ {0}, ·|F\{0}×F\{0}) is an abelian group.
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Example 3 • C,R and Q are all fields, with the usual addition and multiplication

operations.

• The integersZ with the usual addition and multiplication operations are not a field,

sinceZ \ {0} is not a group.

• If p ∈ N is prime, the setZp with addition and multiplication mod-p is a field. We

will denote this field byFp.

• If n ∈ N is not prime then the setZn with addition and multiplication mod-n is not

a field.

We say that a field isfinite if it has a finite number of elements, just like we did with

groups. Similarly, the termssubfieldandisomorphism of fieldsare defined in an analogues

way to the definitions we had for groups.

Theorem 2 If F is a finite field then there existsm ∈ N and a primep ∈ N such that

|F | = pm. Conversely, for every primep ∈ N andm ∈ N there exists a fieldF such that

|F | = pm, and this field is unique (up to isomorphism).

It follows from theorem 2 that for example one cannot find a field with 6 element (since

6 is not a power of a prime). It also tells us that ifp is prime thenFp is essentially

the only field withp elements (i.e any other field withp elements will be isomorphic

to Fp). Moreover, for everym ∈ N there is a (unique) field of sizepm, which we will

denote asFpm. Careful: the fieldF22 = F4 is not the same asZ4 with addition and

multiplication mod-4, as we have seen that the latter is not a field. It turns out thatthey

will have a similar additive structure, but the multiplication will be very different. In

order to understand how the multiplication looks like in such a field, we first have to

talk about polynomials.

III. POLYNOMIALS

Definition 9 (Polynomial) Let F be a field and letm be a non-negative integer. Anon-

zero polynomialf(x) of degreem overF is a formal expression

f(x) = a0 + a1x+ a2x
2 + . . .+ am−1x

m−1 + amx
m (2)
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where the coefficientsai ∈ F for all 0 ≤ i ≤ m and the leading coefficientam 6= 0. We

also denote the degree by degf(x) = m. The zero polynomialf(x) = 0 is a similar

formal expression in which all of the coefficients are zero, and it’s degree is defined to

be−∞.

Two polynomials are equal iff all of their coefficients coincide. Note that we think about a

polynomial as a formal expression, andnot as a function. To see the difference, consider

the polynomialf(x) = x+ x2 over the fieldF2: it’s easy to verify thatf(a) = 0 for all

a ∈ F2, yet f(x) is clearly not the zero polynomial. The set of all polynomials over a

field F is denoted byF [x]. We define the operations of addition(+) and multiplication(·)

of two polynomials inF [x] in the same way one would normally add and multiply

polynomials, where the coefficient operations are performed in F . With these definitions

one can see that(F [x],+) forms an abelian group, while(F [x], ·) does not form a group

since for example the polynomialx is not invertible. This situation resembles that of the

integersZ, and in fact these two structures have a few more similar properties which we

will soon see.

A polynomial g(x) is said to be adivisor of f(x) if f(x) = g(x) · q(x) for some

polynomial q(x). g(x) is called amonic polynomial if it’s leading coefficient equals1.

We say that a monic polynomialg(x) is a factor of f(x) if g(x) is a non-trivial divisor

of f(x) (i.e. it is a divisor that is not1 and notf(x) itself). A prime polynomial is a

monic polynomial of degree≥ 1 that has no factors. To illustrate these properties, lets

look at some polynomials overF3:

• f(x) = 0 : every polynomial is a divisor of0, since0 = g(x) ·0 for all g(x) ∈ F3[x].

• f(x) = 1 : f(x) is monic with no factors, but degf(x) = 0 so he is not prime.

• f(x) = x : f(x) is prime.

• f(x) = 2x : f(x) is not monic so it is not prime.

• f(x) = x+ 1 : f(x) is prime. In fact every polynomial of the formx+ a is prime.

• f(x) = x3 +1 : f(x) = (x+1)3 sox+1 is a factorf(x), hencef(x) is not prime.

• f(x) = x2 + 2x+ 1 : f(x) = (x+ 1) · (x+ 2) so he is not prime
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• f(x) = x2 + 1 : by trying all possible combinations of degree1 polynomials, we

see thatf(x) is prime.

The prime polynomials inF[x] are very similar to the prime numbers inZ. For example

it can be shown that every monic polynomial has a unique factorization to prime

polynomials, just like the fact that any integer> 1 has a unique factorization to prime

numbers. Another property thatF [x] andZ have in common is the fact that we can do

division with reminder for polynomials, the same way we do itfor integers:

Theorem 3 Let g(x) be a monic polynomial of degreem over some fieldF . For every

f(x) ∈ F [x] there exists uniqueq(x), r(x) ∈ F [x] with degr(x) < m such thatf(x) =

g(x)·q(x)+r(x). r(x) is called thereminder, and we denote it byr(x) := f(x) mod-g(x).

We will start by showing uniqueness. If̃r(x), q̃(x) is another pair that satisfies the

conditions of the theorem, it follows that:

g(x) · q(x) + r(x) = g(x) · q̃(x) + r̃(x) ⇒ g(x) · (q(x)− q̃(x)) = r̃(x)− r(x) (3)

but the right-hand side of the last equation is of degree strictly less than degg(x),

and so equality can occur only whenq(x) − q̃(x) is zero since otherwise the degree of

the left-hand will be at least degg(x). But then r̃(x) − r(x) is also zero, establishing

uniqueness. The existence of such polynomials follows by simply using the regular

polynomial division algorithm from high school, where the operations on the coefficients

are done according to the rules of the fieldF . Notice thatg(x) is a divisor off(x)

iff f(x) = 0 mod-g(x). If deg f(x) < degg(x) then the reminder off(x) mod-g(x) is

simply f(x).

On the setF [x]g(x) := {f(x) ∈ F [x] :degf(x) <degg(x)} we can define the mod-g(x)

operations in the same way we do mod-n operations inZn: To multiply two polynomials

mod-g(x) we simply multiply them inF [x] and then take the reminder of the result mod-

g(x), and similarly for addition. For our purpose, the most important similarity between

F [x] and Z is the following: just like the integers mod-p formed a field whenp was

prime, we will see that the polynomials mod-g(x) also form a field wheng(x) is prime.
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IV. F INITE FIELD

Theorem 4 Let p be a prime number and letg(x) be a prime polynomial of degreem

over the finite fieldFp. Then the setFp[x]g(x) together with addition and multiplication

mod-g(x) forms a field withpm elements.

Example 4 (The fieldF4) In order to construct a field with4 = 22 elements, we need

to take the fieldF2 of two elements and a prime polynomialg(x) of degree2 over that

field, and then look atF2[x]g(x) with addition and multiplication mod-g(x). In this case,

the only such polynomial isg(x) = x2 + x+1. The elements of the field are:0, 1, x and

x+1. The resulting addition and multiplication operations arepresented in the following

tables:
+ 0 1 x x+ 1

0 0 1 x x+ 1

1 1 0 x+ 1 x

x x x+ 1 0 1

x+ 1 x+ 1 x 1 0

· 0 1 x x+ 1

0 0 0 0 0

1 0 1 x x+ 1

x 0 x x+ 1 1

x+ 1 0 x+ 1 1 x


