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Mathematical methods in communication

Lecture 12

Lecturer: Haim Permuter Scribe: Osher Yaaur

I. GROUPS

In order to give an exact definition of a group, we first have molarstand what a

binary operation is:

Definition 1 (Binary Operation) Let S be a set. @inary operationd on S is a map
d:SxS— 9, ieitis a function (denoted by the symbab”) that takes two elements

from the setS and returns another element frash

Fora,b € S, we will usually denote the image of the pé&ir, b) under the binary operation
@ by a @ b, instead of the usuab(a, b) notation for functions. Two main properties a

binary operation can possess are:

Definition 2 (Associativity) A binary operation® on the setS is said to beassociative

if for all a,b,c € S we have thala b)) ®c=a® (b® ¢).

Definition 3 (Commutativity) A binary operation® on the setS is said to becommu-

tative if for all a,b € S we have thatt b =b D «a.

When the operation is associative, we can write an expression asz ¢ b & ¢ without
having to worry about specifying the order of the operatiusing parenthesis), since
any such choice would yield the same result. If in additiom dperation is commutative,
we may write the elements, b, c in any order.

We are now ready for:
Definition 4 (Group) A group (G, ®) is a setG together with a binary operatiop on
G such that:

1) (Closure) For every, b € G we have thatt b € G

2) (Associativity) The operatior is associative
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3) (Identity) There exist a special element G, called thadentityelement, satisfying
a®e=ePa=aforalaecdG
4) (Inverse) For every, € G there exista € G, called theinverseof a, such that
aba=aDa=e.
If in addition we have:
5) (Commutativity) The operatiom is commutative

then we say that it is aabelian group(or commutative group

Notice that demanding property 1 (Closure) in the definiticeswinnecessary, since it
follows directly from the fact thatp is a binary operation o’. Nevertheless, we chose
to include it there in order to emphasize that fact. Usu#tig,binary operation of a group
is denoted by eithet’ or '+'. When using multiplicative notation (i.e tHé symbol) it

it customary to denote the identity element byand the inverse of an elememtoy .

When using additive notation (i.e tHhe’ symbol) it is customary to denote the identity
element by0 and the inverse of an elememtoy —a. Additive notation is generally used
only for abelian groups, whereas multiplicative notatignused for both abelian and

nonabelian groups.

Example 1 (Groups) « The setZ of all integers together with the usual addition
operation is an abelian group. All of the axioms can be eashfied here. Another
example which is somewhat less trivial is the following:

. The setGL(2,R) of all 2 x 2 invertible matrices together with the matrix multipli-
cation operation is a group. First, multiplying tv2ox 2 invertible matrices results
in another2 x 2 matrix which is also invertible (why?), so this multiplicat is
indeed a binary operation. Second, matrix multiplicatisramn associative operation
(not trivial but also not hard to verify). Third, the matrik is obviously a2 x 2
invertible matrix who acts as the identity. Finally, evenyertible matrix has an
inverse. Notice that this group ot abelian - one can easily find two matricdasB
such thatd - B # B - A (try!).

« The setZ of all integers together with the usual multiplication ogtérn is not a

group, since property 4 (Inverse) does not hold here. Fanpig there is no integer
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a which satisfie® - a« = 1, and so the intege? does not have an inverse (actually,
the only invertible elements here areand —1).

The setQ of all rational numbers together with the usual multiplioatoperation is
alsonot a group, since now the numberdoes not have an inverse. However, this
can be fixed:

The setQ\ {0} of all rational numbers except the numlietogether with the usual
multiplication operationis an abelian group.

Forn € N we can take the set of numbef8,1,2,...,n— 1} (which we denote by
Z,,) together with the operation of addition mad-This formes an abelian group,
where for example the identity here is the numbeand the inverse of a number
a IS n — a. The same set together with multiplication modwill not form a group,
since the numbe® is not invertible under multiplication. We can try to fix thy
removing0 from the set, just like we did witl§):

The set of number&,, \ {0} = {1,2,...,n— 1} together with multiplication moa-
forms a group if and only ifn is prime (this will be proven in an exercise). For
example, the multiplicative inverse 8fin Z;\ {0} is 5, while for Z¢ \ {0} we have
that2 -3 =0 ¢ Zg \ {0}.

Definition 5 (Subgroup) Let (G, +¢) be a group, and lel/ C G be a subset ofs. We

denote by+y the restriction of the operatiofs to H (i.e. +y := +¢|uxu), and we

say that(H,+y) is asubgroupof (G,+¢) If (H,+p) forms a group on it’s on.

For example, the even integers is a subgroup of the grouplahtalgers (when the

operation is, of course, addition). For simplicity, frommnon we shall sometimes denote

a group just by the set’ without specifying the binary operation, for example whba t

specific operation is irrelevant or when it can be understfsoth the context. Let's

introduce some more notations: the number of elements obapdi, +) is denoted by

|G|, and say that the group faite if |G| < oo. Forg, h € G we will write g — h instead

of g + (—h) (remember that-h is the inverse ofh). If ¢ € G andn € Z we use the
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notation
( n times

g+g+g...+g, if n>0.

ng = \ye, if n=0. 1)

n times

A\

“g—g—g...—g, ifn<0.
\

Definition 6 (Cyclic Group) We say that a grou@ is cyclicif there exists some element
a € G such that for every) € G we have thay = na for somen € Z. In such case we

say thata is a generatorof G.

Example 2 (Cyclic Groups) « The group(Z,+) is cyclic, sincel and also—1 are
generators.

« The group(Z; \ {0}, -) is cyclic, since2 for example is a generator.
Definition 7 (Isomorphism of Groups) Let (H,+py),(G,+s) be two groups. A map
® : H — G is called anisomorphismbetweenH andG if:

1) & is bijective (i.e. one-to-one and onto)
2) For alla,b € H we have thatb(a +5 b) = ®(a) +¢ P(b).
If there exists an isomorphism between two groups we say tihade groups are

isomorphic

Theorem 1 Let G be a finite cyclic group witm = |G| elements. Thel is isomorphic

to the groupZ,.

[l. FIELDS
Definition 8 (Field) A field (F,+,-) is a setF’ together with two binary operations
and- on F such that:

1) (F,+) is an abelian group.
2) (F\{0},-) is an abelian group
3) (Distributivity) For alla,b,c € F we have thati- (b+¢) = (a-b) + (a - ¢)

!Strictly speaking, we should require th@ \ {0}, ‘|F\{o}xF\{0}) is @n abelian group.
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Example 3 « C,R andQ are all fields, with the usual addition and multiplication

operations.

« The integer<Z with the usual addition and multiplication operations ac¢ & field,
sinceZ \ {0} is not a group.

« If p e Nis prime, the sefZ, with addition and multiplication mog-is a field. We
will denote this field byF,.

« If n € N is not prime then the séi,, with addition and multiplication mod-is not
a field.

We say that a field idinite if it has a finite number of elements, just like we did with
groups. Similarly, the termsubfieldandisomorphism of fieldare defined in an analogues

way to the definitions we had for groups.

Theorem 2 If F'is a finite field then there exista € N and a primep € N such that
|F| = p™. Conversely, for every primg € N andm € N there exists a field” such that

|F| = p™, and this field is unique (up to isomorphism).

It follows from theorem 2 that for example one cannot find adfi@ith 6 element (since
6 is not a power of a prime). It also tells us thatpifis prime thenF, is essentially
the only field withp elements (i.e any other field with elements will be isomorphic
to IF,). Moreover, for everyn € N there is a (unique) field of size™, which we will
denote agF,~. Careful: the fieldF,. = F, is not the same a%, with addition and
multiplication mod4, as we have seen that the latter is not a field. It turns outthest
will have a similar additive structure, but the multiplicat will be very different. In
order to understand how the multiplication looks like in s field, we first have to

talk about polynomials.

I1l. POLYNOMIALS

Definition 9 (Polynomial) Let F' be a field and letn be a non-negative integer. Aon-

zero polynomialf (z) of degreem over F' is a formal expression

f(@) = ag + a1z + aga® + ...+ 12"+ apa™ (2)
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where the coefficients; € F' for all 0 < i < m and the leading coefficient,, # 0. We
also denote the degree by d¢gr) = m. The zero polynomialf(z) = 0 is a similar
formal expression in which all of the coefficients are zemd &'s degree is defined to

be —oco.

Two polynomials are equal iff all of their coefficients coide. Note that we think about a
polynomial as a formal expression, andt as a function. To see the difference, consider
the polynomialf(z) = x + z* over the fieldF,: it's easy to verify thatf(a) = 0 for all
a € Fy, yet f(x) is clearly not the zero polynomial. The set of all polynommialver a
field F' is denoted byF'[z]. We define the operations of additiar)(and multiplication()
of two polynomials inF[z] in the same way one would normally add and multiply
polynomials, where the coefficient operations are perfarimer’. With these definitions
one can see thaf'[z], +) forms an abelian group, whilg?'[z], -) does not form a group
since for example the polynomialis not invertible. This situation resembles that of the
integersZ, and in fact these two structures have a few more similargot@s which we
will soon see.

A polynomial g(z) is said to be alivisor of f(z) if f(z) = g(z) - q(z) for some
polynomial ¢(x). g(z) is called amonic polynomial if it's leading coefficient equals.
We say that a monic polynomialz) is afactor of f(z) if g(x) is a non-trivial divisor
of f(z) (i.e. it is a divisor that is not and notf(z) itself). A prime polynomial is a
monic polynomial of degree> 1 that has no factors. To illustrate these properties, lets

look at some polynomials ovéfs:

e f(x)=2%+1: f(z) = (x+1)> sox+1is a factorf(z), hencef(x) is not prime.

« f(x) =0 : every polynomial is a divisor di, since0 = g(z)-0 for all g(x) € F3[z].
« f(z)=1: f(x) is monic with no factors, but deg(z) = 0 so he is not prime.
e f(x)=ua: f(x) is prime.
e f(x)=2x: f(z) is not monic so it is not prime.
e f(z)=xz+1: f(z)is prime. In fact every polynomial of the form+ a is prime.
()
()
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o f(z) = 2%+ 1 : by trying all possible combinations of degréepolynomials, we

see thatf(z) is prime.

The prime polynomials iff[z| are very similar to the prime numbers# For example
it can be shown that every monic polynomial has a unique feetion to prime
polynomials, just like the fact that any integer1 has a unique factorization to prime
numbers. Another property thédt[z| andZ have in common is the fact that we can do

division with reminder for polynomials, the same way we ddoit integers:

Theorem 3 Let g(z) be a monic polynomial of degree over some fieldF. For every
f(z) € F[z] there exists unique(z),r(z) € F[z] with degr(z) < m such thatf(z) =
g(x)-q(x)+r(z). r(z) is called theeminder and we denote it by(z) := f(z) mody(z).

We will start by showing uniqueness. ff(z),j(z) is another pair that satisfies the

conditions of the theorem, it follows that:

g(x) - q(x) +r(x) = g(x) - 4(x) + 7(x) = g(z) - (¢(z) — 4(z)) = 7(z) = r(z) Q)

but the right-hand side of the last equation is of degreethtriess than deg(z),
and so equality can occur only whelx) — ¢(z) is zero since otherwise the degree of
the left-hand will be at least deg(x). But thenr(x) — r(x) is also zero, establishing
uniqueness. The existence of such polynomials follows lbypli using the regular
polynomial division algorithm from high school, where theeoations on the coefficients
are done according to the rules of the figld Notice thatg(x) is a divisor of f(x)

iff f(z) =0 mody(x). If deg f(x) < degg(x) then the reminder of (z) mody(z) is
simply f(z).

On the setF[z]y,) := {f(z) € F[z] :deg f(x) <degg(x)} we can define the modtx)
operations in the same way we do meaperations irZ,: To multiply two polynomials
mod-y(z) we simply multiply them inF'[z] and then take the reminder of the result mod-
g(x), and similarly for addition. For our purpose, the most intpot similarity between
F[z] and Z is the following: just like the integers magdformed a field wherp was

prime, we will see that the polynomials mgdx) also form a field whery(x) is prime.
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IV. FINITE FIELD

Theorem 4 Let p be a prime number and lg{z) be a prime polynomial of degree
over the finite fieldF,. Then the sef,[z],,) together with addition and multiplication

mody(z) forms a field withp™ elements.

Example 4 (The fieldF4) In order to construct a field with = 22 elements, we need
to take the fieldF, of two elements and a prime polynomiglr) of degree2 over that
field, and then look aF,|z],) with addition and multiplication mog<{x). In this case,
the only such polynomial ig(z) = 2? +x + 1. The elements of the field aré; 1,z and

x+ 1. The resulting addition and multiplication operations presented in the following

tables:
+ 0 1 x r+1 0 1 x z+1
0 0 1 x r+1 0 0 0 0 0
1 1 0 r+1 x 1 0 1 x r+1
T T rz+1 0 1 T 0 T z+1 1
r+1|z+1 T 1 0 r+110 z+1 1 x




