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Introduction to Information Theory

Lecture 12 Part C

Lecturer: Haim Permuter Scribe: Omer Pilosof, Itzik Waizman

I. REMINDER

In our previous lectures, we delved into channel coding using polar codes. We learned that

given a channel WY |X , we can transform this channel into virtual channels and polarize

the error probabilities across these channels. By selectively utilizing the reliable virtual

channels, we observed that polar codes achieve near-optimal performance in terms of error

correction capability and channel capacity. We explored how, given n bits u1, . . . , un, we

can use the matrix G⊗n to encode our bits before transmitting them through the channel,

where G⊗n represents the n-th Kronecker power of the polarizing matrix

G2 =

1 0

1 1

 .

After transmitting the encoded bits {x1, . . . , xn} through the channels, we calculate the

Log Likelihood Ratios (LLRs), LLR(xi), using the received signals {y1, . . . , yn}, where

LLR(xi) = log
(

P (xi=1|y)
P (xi=0|y)

)
. These LLRs are then used for bit decision, providing us with

an estimation of the original bits u1, . . . , un. The process is illustrated in Figure 1.

We also saw that the capacity of the i-th channel is given by Ci = I(ui; y
n|ui−1).

Here, k bits of information are sent via reliable channels, where the capacity approaches

1, while n−k frozen bits are sent through noisy channels, where the capacity approaches

0. This gives us a rate of k
n

, where in the context of channel coding, our goal was to

achieve the highest possible rate, constrained by the capacity of the channel WY |X . In

the upcoming section, we will explore another significant application of polar codes,

specifically data compression.
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Fig. 1: Polarization process for channel coding.

II. BACKGROUND

In this lecture, we will explore the application of polar codes for data compression,

transitioning from their conventional use in error correction to utilizing the polarization

matrix for compression. Polar codes play a crucial role in communication by enabling

efficient data compression for transmission over networks. This is particularly beneficial

in distributed compression scenarios, such as wireless sensor networks and distributed

video coding. As near-capacity channel codes, polar codes exhibit significant potential

and have been shown to achieve compression rates close to theoretical limits. This lecture

is based on [1].

We begin by outlining our objective. Consider n random variables Z1, . . . , Zn, which

are independently and identically distributed (i.i.d.) following a Bernoulli distribution,

Ber(p). Our aim is to design an encoder-decoder system that reduces the number of

transmitted bits from n to a smaller portion k, while still allowing the decoder to

accurately reconstruct the original input. Specifically, the estimated values from the

decoder, Ẑ1, . . . , Ẑn, should satisfy the condition:
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P (Ẑn ̸= Zn) ≤ εn,

where εn → 0 as n → ∞. In this context, the compression rate is defined as k
n

, with

k being the number of bits actually transmitted. Unlike channel coding, where the goal

is to maximize the rate, in data compression we aim to minimize the rate to achieve

efficient data reduction.

III. COMPRESSION USING POLAR CODE

The objective outlined in the previous section can be addressed using the concept of

polarization. Given n bits, z1, . . . , zn, generated from our n random variables Z1, . . . , Zn,

we will employ a polarization matrix, as we have done in channel coding, denoted by

G⊗n, to achieve the encoded input wn = znG⊗n. This polarization process results in

n − k bits that are considered predictable where a bit wi is deemed predictable if the

following condition holds:

H(wi|wi−1) ≤ ε,

for a predefined acceptable ε. On the other hand, there are k unpredictable bits, where a bit

wi is deemed unpredictable if H(wi|wi−1) ≥ 1−ε. The k unpredictable bits correspond to

k transformed random variables whose distribution approaches Ber(1/2). Initially, all the

distributions were the same, Ber(p), but through the transformation, they are polarized.

Since the predictable bits can be estimated with high probability using the k unpredictable

bits, we can reduce the transmitted data to these k bits, effectively increasing throughput.

The decoder will utilize the received signals to reconstruct the original bits. For the bits

that were not transmitted, it estimates a sample using the received signals. Specifically,

if wj is a predictable bit and was not transmitted, the decoder will estimate ŵj using:

ŵj = argmax
b

P (wj = b|wj−1).

The estimated ŵi values will then be used to decode the received information and

reconstruct the original input data, as we will explain in detail later on. The described
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Fig. 2: Polarization process for data compression.

process is illustrated in Figure 2, where ŵi represents the received signals by the decoder.

The ’?’ symbol denotes a predictable bit that was not transmitted and is estimated by the

decoder using the argmax method explained previously.

Example 1 (Polarized Encoding with n = 2) Consider two independent and identi-

cally distributed Ber(p) random variables, Z1 and Z2. The encoding scheme is defined

as follows:
z1

z2 z2

z1 ⊕ z2

Assume 0 ≤ p ≤ 1
2

for simplification and let w1 = z1 ⊕ z2, w2 = z2. Note that

P (w1 = 1) = P (z1 = 0, z2 = 1) + P (z1 = 1, z2 = 0),

and thus

P (w1 = 1) = 2p(1− p) ≥ p.
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Fig. 3: Polarization scheme for n inputs.

Furthermore, since (1−2p)2 ≥ 0, it follows that 2p(1−p) ≤ 1
2
. Consequently, the entropy

of W1 is increased, i.e., H(W1) ≥ H(Z1). The transformed distribution remains Bernoulli

but moves closer to Ber
(
1
2

)
for larger values of p, while still being less than 1

2
. For W2,

given the injective mapping between W2 and Z2, we have H(W2) = H(Z2). Moreover,

since conditioning reduces entropy, it holds that H(W2|W1) ≤ H(Z2). In summary:

H(W1) ≥ H(p)

H(W2) ≤ H(p)

The distribution of W1 approaches Ber
(
1
2

)
, identifying W1 as the unpredictable bit to be

transmitted.

Example 2 (Polarized compression with n input) Let G2n =

1 0

1 1

⊗n

and zn =

{u, v} where u = {Z1, ..., Zn
2
} and v = {Zn

2
+1, ..., Zn}. The polarization scheme is

illustrated in Figure 3, where Gn(z
n) = Gn(u, v) = (Gn

2
(u), Gn

2
(v)). This example

demonstrates how polarized compression can be applied to n input bits. This example
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shows how a larger polarization matrix Gn
2 can be constructed by taking the Kronecker

power of the 2x2 polarization matrix G2. The input vector Z is then partitioned into two

subvectors u and v, and the polarization matrix is applied to each subvector separately.

The resulting polarized vector W has some bits that are more entropic and some bits

that are less entropic. This example illustrates how the concept of polarization can be

extended to larger input sizes and how it can be used to achieve efficient compression

of data.

We have illustrated how the entropy characteristics of transformed variables differ in the

polarization process. Next, we will delve into an analysis of the polarization computational

complexity.

A. Polarization Methods

Before proceeding to the computational complexity analysis, we will first recall the

polarization methods we have previously learned. Following this review, we will introduce

an additional method to further enhance our understanding and simplify the complexity

computation.

1) Matrix multiplication

Matrix multiplication is a straightforward method where we simply multiply the input

bits with the polarization matrix. Given n bits, the polarization matrix is G⊗n, as presented

at the beginning of this lecture. Thus, we have

wn = znG⊗n.

2) Diagram Calculation

In this method we calculate the polarization using the diagram described in Figure 4.

3) Tree Method

In this method, we perform recursive vector additions over pairs of nodes that share

a common parent in the following way: For each pair of nodes u and v with a common

parent, we create a new vector for the parent node defined as [u+v, v]. An example with

n = 4 is given below in Figure 5.
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Fig. 5: Polarization calculation using tree diagram.

4) Recursive Formula

Now, we present a new recursive approach to calculate the polarization. This method

provides a convenient formulation for complexity analysis. Let z = [u, v] where z ∈ Fn
2 ,

u ∈ F
n
2
2 , and v ∈ F

n
2
2 . We denote by Pn(z) the polarization vector of z, and define the

following recursive rule:

Pn(z) =
[
Pn/2(u⊕ v), Pn/2(v)

]
,

where P1(z) = z. This recursive approach constructs the polarization vector by combining

the polarization of the XOR operation between the two halves and the polarization of the

second half. To illustrate this new recursive approach, we will demonstrate an example

with n = 4. Let z4 = [z1, z2, z3, z4]. We set u = [z1, z2], v = [z3, z4]. Then,

P4(z
4) = [P2([z1 ⊕ z3, z2 ⊕ z4]), P2([z3, z4])]
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= [z1 ⊕ z2 ⊕ z3 ⊕ z4, z2 ⊕ z4, z3 ⊕ z4, z4],

as expected. This recursive formula can be use to calculate the polarization complexity.

B. Polarization Complexity

Lemma 1 (Polarization complexity time) Let T (n) be the complexity time of polar-

ization of a vector z ∈ Fn
2 . Then, T (n) = O(n log n), where big O notation is defined in

Definition 2.

Proof: In each recursive step we perform the following:

• Splitting: The input vector of length n is split into two vectors of length n
2
.

• XOR Operations The XOR operation is performed between the two halves.

• Recursion The process is then applied recursively to each of these halves.

Given this, the total number of operations performed can be expressed using the

recurrence relation

T (n) = 2T (
n

2
) +O(n),

where O(n) represent the linear work done in each step for the XOR operations between

the halves. This recurrence relation is a classic example of the divide-and-conquer

strategy. Note that

T (n) = 2T
(n
2

)
+O (n)

= 2
[
2T
(n
4

)
+O

(n
2

)]
+O (n)

= 4T
(n
4

)
+O (n) +O

(n
4

)
,

and in general, one can prove using induction, that:

T (n) = 2lognT (1) +

logn∑
i=0

O
( n
2i

)
= nT (1) +O (n log n) ,

and thus T (n) = O (n log n) .■
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C. Decoding compressed data

We now provide a detailed explanation of how the decoder operates. As previ-

ously mentioned, the decoder receives k bits corresponding to the unpredictable bits

wi1 , . . . , wik . The goal is to estimate the remaining (n − k) bits using the following

method:

ŵij = argmax
b

P (wij = b|W ij−1).

To compute this argmax, the decoder must estimate the distribution of wij . This process

involves utilizing the unpredictable bits in a manner similar to how we used the frozen

bits in channel coding. We will start with the case where n = 2. Let Z1 and Z2

be two independent random variables distributed as Ber(p1) and Ber(p2), respectively.

Assume that w1 = z1⊕ z2. To calculate argmax
b

P (w2 = b|w1), the decoder must estimate

P (w2|w1). Define

b+(p1, p2) := p1(1− p2) + p2(1− p1),

and note that:

P (w1 = 1) = P (z1 = 1, z2 = 0) + P (z1 = 0, z2 = 1)

(a)
= P (z1 = 1)P (z2 = 0) + P (z1 = 0)P (z2 = 1)

= p1 (1− p2) + p2 (1− p1)

(b)
= b+ (p1, p2) ,

where (a) stems from the assumption that Z1, Z2 are independent and (b) is due to the

definition of b+. Next, we observe that:

P (w2 = 1|w1 = 0) = P (z2 = 1|z1 ⊕ z2 = 0)

=
P (z2 = 1, z1 ⊕ z2 = 0)

p (z1 ⊕ z2 = 0)

=
p1p2

p1p2 + (1− p1) (1− p2)
,

and similarly:

P (w2 = 1|w1 = 1) =
p1(1− p2)

p1(1− p2) + p2(1− p1)
.
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Fig. 6: Successive cancellation scheme for n = 2.

Thus, using ŵ1, we can estimate the distribution P (w2|w1) and determine ŵ2 by taking

the argmax. Let us denote this estimation of P (w2|w1) with b
′
(p1, p2, û1). The successive

cancellation scheme for n = 2 is illustrated in Figure 6, where the process begins at

the left child node to achieve ŵ1. Using ŵ1 we move to the right child to estimate ŵ2.

Then, ŵ1 and ŵ2 are propagated upwards to the parent node. Finally, given ŵ1, ŵ2 and

the polarizing matrix P , one can reconstruct z1, z2 using

ẑn = ŵn · P−1, (1)

where P is the polarizing matrix used to transform z1, z2 into w1, w2.

Given an arbitrary n, this process naturally generalizes in a recursive manner using a

tree diagram, similar to our discussion of channel coding. Indeed, given a probabilities

vector p = [p1, ..., pn], we divide the vector into 2 sub-vectors p1 =
[
p1, ..., pn

2

]
, and

p2 =
[
pn

2
+1, ..., pn

]
. Then we move to the left child, and calculate b+

(
p1, p2

)
to receive

ŵleft. Utilizing ŵleft we proceed to the right child and estimate ŵright using b
′
(p1, p2, ŵleft).

Finally the parent node propagates upwards [ŵleft ⊕ ŵright, ŵright] using the values estimated

by each of the childs. Once the root gathers all the estimations from its successors using

equation 1. We provide another example of successive cancellation for n = 4 in Figure

7.

Remark 1 We have seen an (n, k) code compression using polar codes. In this setup,

errors may always occur due to errors in the estimation of the predictable bits using

argmax
b

P (wn = b|wn−1). Assume dynamic coding is acceptable, meaning we allow the
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Fig. 7: Successive cancellation scheme for n = 4

increase in the number of transmitted bits while still maintaining the requirement that the

expectation of the rate remains low. What modifications should be made to the encoder

to ensure totally lossless transmission?

Answer: Since we assume the channel is not noisy, the encoder can accurately

determine the values that will be received by the decoder. Therefore, for each predictable

bit, the encoder can calculate the prediction that will be made by the decoder. If an error

occurs, the encoder can transmit the corresponding bit to correct the decoder’s erroneous

estimation. This dynamic adjustment ensures that the transmission remains lossless while

keeping the expected rate low.

IV. THEORETICAL ANALYSIS

Throughout this theoretical discussion, consider:

• P ∈ Fn×n
2 - invertible matrix.

• Zn = (Z1, Z2, ..., Zn) ∼ Bern(p)n - n size vector of i.i.d Bern(p).

• W n ≜ Zn · P
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• W i = (W1,W2, ...,Wi).

• We say that Wi is highly predictable given W i−1 if H(Wi|W i−1) ≤ τ for a small τ .

• S = Sτ = {i ∈ [1, ..., n]|H(Wi|wi−1) > τ} - the set of unpredictable elements.

We start with several properties regarding the set S. First, in the following lemma, we

introduce an upper bound on the entropy of W n.

Lemma 2 (Upper bound on H(W n)) Let S be the set of unpredictable elements of

W n. Then we have that H(W n) ≤ |S|+ n · τ .

Proof:

H(W n)
(a)
=

n∑
i=1

H(Wi|W i−1)

(b)
=

∑
i∈S

H(Wi|W i−1) +
∑
i/∈S

H(Wi|W i−1)

(c)

≤ |S|+ τ(n− |S|)

≤ |S|+ n · τ,

where (a) follows from the chain rule, (b) follows from sum property, and (c) follows

from the fact that H(X|Y ) ≤ H(X) and Hb(Wi) ≤ 1 (Wi is binary).

Moving forward, using Lemma 2, we provide in the following lemma a lower bound

on the set S of unpredictable elements of W n.

Lemma 3 (Size of S) Let Zn = (Z1, Z2, ..., Zn) ∼ Bern(p)n and P ∈ Fn×n
2 invertible

matrix. Further, let W n ≜ Zn · P and S be the set of unpredictable elements of W n.

Then, the size of the set S is lower bounded by |S| ≥ n · (H(p)− τ).

Proof: Consider the following:

|S|+ n · τ
(a)

≥ H(W n)

|S|+ n · τ
(b)

≥ H(Zn)

|S|+ n · τ
(c)

≥ n ·Hb(p),
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Fig. 8: Encoder-Decoder system.

where (a) follows from Lemma 2, (b) follows from the fact that P is invertible, and (c)

follows from the fact that zn is distributed i.i.d Bern(p). Accordingly, we obtain that

|S| ≥ n · (Hb(p)− τ).

In conclusion, Lemma 2 provides a lower bound on the size of the set S, which contains

the indices of the unpredictable elements of the polarized vector W n. This result is derived

by using the chain rule of entropy and some properties of entropy to relate the entropy of

W n to the entropy of the original data symbols Zn and the conditional entropy of each

bit Wi given the previous bits W i−1. This lemma provides a useful tool for estimating

the size of S and understanding the behavior of polar codes.

To sum up and relate to the practical examples we have seen earlier, our process is

illustrated in Figure 8, where zn is an i.i.d vector ∼ Bern(p)n, wn ≜ zn · P , and S is

equal to the set of unpredictable elements of wn. The encoder receive zn and outputs

w|S| which consist of the wi for which i ∈ S. The decoder receive w|S| to compute ẑn.

Note that:

• We use |S| bits over n bits message, and therefore the rate is R = |S|
n

.

• At lecture 5 we have shown that R ≥ H(zn).

The decoder operates according to the successive cancellation decompression (SCD)

algorithm. The SCD algorithm works as follows:

• Input: w|S|, S ⊆ [1, ..., n], P ∈ Fn×n
2 .

• Output: ẑn ∈ Fn
2 .

• Algorithm:

1 SCD(w|S|, S, P )

2 f o r i = 1 to n :
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3 i f i ∈ S :

4 ŵi = wi

5 e l s e :

6 ŵi = argmax
b

{PWi|W i−1(b|ŵi−1)}

7 r e t u r n ẑn = ŵn · P−1

Our decoder is taking the bits we sent w|S| and building new vector ŵn of size n as

follows. For indices i ∈ S (that correspond to unpredictable bits) we set ŵi = wi. Else,

it means that Ŵi is predictable so we can predict him. After we got ŵn we can compute

ẑn by the inverse matrix P , i.e., ẑn = ŵn · P−1

A. Theorem Error of source coding

In the following we introduce a theorem which provides a theoretical bound on the

error rate of SCD algorithm when using polar codes for compression. We start with the

following definition of an (ϵ, τ) polarizing:

Definition 1 (Polarized matrix & unpredictable columns) We say that an invertible

matrix P ∈ Fn×n
2 is (ϵ, τ)-polarizing for Bern(p)n if for W n = Zn · P (where Zn ∼

Bern(p)n) and

S = Sτ = {i ∈ [1, ..., n] | H(Wi|W i−1) > τ}

we have |S| ≤ n · (H(p) + ϵ).

The theorem states that if the polarizing matrix P is (ϵ, τ) polarizing with unpredictable

columns S, then the failure probability of the SCD is τ · n, where n is the length of

the code. This means that the probability that the original data symbols zn cannot be

recovered exactly from the compressed representation ẑn is less than or equal to τ · n.

The theorem also states that if P is (ϵ, ϵ/n) polarizing, then the error rate of the SCD

decoder is at most ϵ. This means that by choosing an appropriate polarizing matrix P ,

it is possible to control the error rate of the SCD decoder and achieve a desired level of

accuracy in recovering the original data symbols from the compressed representation.
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In summary, this theorem provides a theoretical bound on the error rate of successive

cancellation decompression when using polar codes for compression and shows how the

choice of polarizing matrix can affect the accuracy of data recovery.

Theorem 1 If P is (ϵ, τ) polarizing with unpredictable columns S then the SCD has

failure probability of τ · n, i.e.

Pr(z
n ̸= ẑn) ≤ τ · n,

where ẑn = SCD
(
(zn ·P )s, P, S

)
. Accordingly, for P that is (ϵ, ϵ

n
) polarizing, we have

that

Perr ≤ ϵ.

Thus, if P is (ϵ, ϵ
n
) polarizing, the error of SCD decoder is at most ϵ.

Before we can prove this theorem we will need to prove the following lemma.

Lemma 4 Let X be random variable with H(X) ≤ α. Then:

1) There exists x ∈ X such that Pr(X ̸= x) ≤ α.

2) Let (X, Y ) be jointly distributed random variable with H(X|Y ) ≤ α, and A(y) =

argmax
x∈X

(P(X = x|Y = y)). Then Pr(X ̸= A(y)) ≤ α.

Proof (part 1): Let pi ≜ Pr(X = i), x ≜ argmax(pi), and px = 1 − γ s.t. Pr(X ̸=

x) = γ.

Test case 1 (γ ≤ 1
2
)

α ≥ H(X)

=

|X|∑
i=1

pi log

(
1

pi

)
(a)

≥
∑
i/∈x

pi log

(
1

pi

)
(b)

≥
∑
i/∈x

pi log

(
1∑

j /∈X pj

)
(c)

≥ γ log

(
1

γ

)
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≥ γ,

where (a) follows from subtracting a positive number from the sum of positive numbers,

(b) follows from the inequality pi ≤
∑

j /∈X pj where i /∈ X , and (c) follows from the

equality Pr(X ̸= x) = γ.

Test case 2 (γ ≥ 1
2
)

α ≥ H(x)

=

|X|∑
i=1

pi log(
1

pi
)

(a)

≥
|X|∑
i=1

pi log(
1

px
)

(b)
= log(

1

px
) ≥ 1

(c)

≥ Pr(X ̸= x),

where (a) follows from the inequality ∀i ∈ [1, |X|]px ≥ pi, (b) follows from the quality

log( 1
px
) is a constant and

∑|X|
i=1 pi = 1, and (c) follows from the quality

∑|X|
i=1 pi = 1.

Proof (part 2):

Pr(X ̸= A(Y ))
(a)
=

∑
y

Pr(X ̸= A(Y ), y)

(b)
=

∑
y

Pr(y)Pr(X ̸= A(Y )|y)

(c)

≤
∑
y

Pr(y)H(X|Y = y)

(d)
= H(X|Y )

≤ α,

where (a) follows from the law of total probability, (b) follows from the Lemma 2

in part (1), (c) follows from the chain rule, and (d) follows from conditional entropy law.
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In summary, Lemma 2 provides two results for bounding probabilities of events

involving random variables with bounded entropy. The first result states that if the

entropy of a random variable X is less than or equal to α, then there exists a value

x such that the probability that X is not equal to x is also less than or equal to α.

The second result states that if X and Y are jointly distributed random variables with

conditional entropy H(X|Y ) less than or equal to α, then the probability that X is not

equal to the value that maximizes the conditional probability of X given Y is also less

than or equal to α.

Proof (Theorem 1): Let W n ≜ Zn · P , and assume that for every i ∈ S we set

Ŵi = Wi. For any i /∈ S, by applying Lemma 2 part (2) with X = Wi, Y = W i−1 and

α = τ we get that

Pr(Wi ̸= Ai(w
i−1)) ≤ τ. (2)

where Ai(·) is

Ai(w
i−1) = argmax

wi

(P(Wi = wi|W i−1 = wi−1)).

By union the bound, we get that
n∑

i=1

Pr(Wi ̸= Ai(w
i−1)) ≤ τ · n.

We can note that the SCD algorithm used Ai(·) that is equal to the argmax. If wn ̸= ŵn

there exists i s.t. ŵi ̸= wi, which gives us Pr(w
n ̸= ŵn) ≤ τ · n. Accordingly, we get

Pr(z
n ̸= ẑn(= SCD(zn · P )s, P, S)) ≤ τ · n.

Theorem 2 (Strong polarization) Fix p ∈ (0, 1
2
) and constant c. There exists a poly-

nomial function n0 such that for every ϵ > 0, there exists n = 2t with 1
ϵ
≤ n ≤ n0

ϵ
,

and a set E ⊆ {1, . . . , n} with |E| ≤ ϵ
2
· n such that for every i /∈ E, the conditional

entropy H(Wi|W i−1) is either less then n−c, or greater then 1 − n−c. Furthermore, if

we let S = {i ∈ [n]|H(Wi|W i−1) ≥ n−c} then |S| ≤ (H(p) + ϵ)n and the matrix Pn is

(ϵ, 1/nc) polarizing for BER(p)n with unpredictable columns S.
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The strong polarization (Theorem 2) allows us to specify how close to zero the

conditional entropy of the polarized bits should be.

In conclusion, we have presented the topic of compression using polar codes, which

are a novel type of error-correcting codes that have great potential for communication and

compression applications. We have explained the concept of polarization, which is the

key idea behind polar codes, and how it separates the entropy of equally entropic bits into

more entropic and less entropic bits by using a polarization matrix. We have also shown

how polar compression operates by encoding only the less entropic bits and using the

SCD algorithm to decode them with low failure probability. Further, we have provided

some theoretical results and proofs to demonstrate the properties and performance of

polar codes.

For more information or more detailed proofs on polar codes and compression, please

refer to [1].
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V. APPENDIX

Definition 2 (Big O notation) Let T (n) be a real valued sequence. We say that T (n) =

O(f(n)) if there exist constants c ∈ R, c > 0 and n0 ∈ N, such that for all n ≥ n0, T (n)

satisfies:

T (n) ≤ c · f(n).

In the context of complexity analysis, T (n) can describe the running time of an algorithm

and f(n) is a function representing the growth rate.
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