
12 Part B-1

Introduction to Information Theory

Lecture 12 Part B

Lecturer: Haim Permuter Scribe: Rom Hirsch and Eyal Yakir

I. BACKGROUND

A. Introduction to Error-Correcting Codes

Error-correcting codes are important because they help ensure reliable communication,

especially when we’re dealing with channels that have a lot of noise or interference. When

we send data through a communication system, it can get mixed up and corrupted due

to noise and interference, which can cause errors in what we receive. Error-correcting

codes are like detectives that can detect and fix these errors, making sure our data gets

transmitted accurately and securely.

To comprehend error-correcting codes, it is essential to understand the notion of the

channel rate. The channel rate signifies the efficiency of transmitting information over the

channel and can be calculated as the ratio of the number of information bits transmitted,

denoted as k, to the total number of bits transmitted, denoted as n. This includes both the

information bits and any redundant bits introduced by the code. In the case of a specific

code represented as (n, k), where n denotes the message size (in bits) and k denotes the

data in the message (in bits), the rate R can be computed as:

R =
k

n
(1)

The rate of a channel provides insights into how efficiently we can transmit the desired

information, taking into account the presence of redundant bits for error correction.

Example 1 Consider the n-repetition code, where a message abc is encoded as aa . . . a
︸ ︷︷ ︸

n times

bb . . . b
︸ ︷︷ ︸

n times

cc . . . c
︸ ︷︷ ︸

n times

. We will analyze the Binary Eraser Channel, characterized by a probability

of 1−p for correct transmission and p for deletion. The channel’s conditional probabilities

are denoted as p(y = i|x = i) = 1− p and p(y =?|x = i) = p.

12 Part B-2

The Binary Eraser Channel transmits each symbol with a probability of 1 − p for

correct transmission and p for deletion. Symbol i is received correctly with probability

1− p, while an erasure symbol is received with probability p.

p

p

1-p

1-p

?

Fig. 1: channel probabilities diagram

Next, we will delve into the examination of the error probability of the code and the

rate for varying values of n. For a given n, the probability of encountering an error is

the probability of deletion of n bits. p(Fail) = pn. As we transmit n bits for every bit of

data, the code corresponds to a (n, 1) code, resulting in a rate of R = 1
n

.

II. POLAR CODES

Polar codes are a type of error-correcting code introduced by Erdal Arıkan in 2008

[1]. The concept behind polar codes is based on the idea of polarization, where a

channel is transformed into subchannels with significantly different error probabilities.

Polar codes leverage this polarization phenomenon to efficiently and reliably transmit

information over a noisy channel. The key concept in polar codes is to identify the reliable

subchannels and exploit them for transmission while effectively ignoring the unreliable

subchannels. By selectively utilizing the reliable subchannels, polar codes achieve near-

optimal performance in terms of error correction capability and channel capacity. Polar

codes have gained significant attention as they are the first codes with an explicit proof

of approaching capacity and are used in modern communication systems, such as control

channels in the 5G standard.

12 Part B-3

u1

u2

...
un

Encoder

w1

w2

...
wn

x1

x2

xn
Decoder

û1

û2

...
ûn

r1

r2

rn

Fig. 2: A polar code diagram illustrating the encoding and decoding process.

A. Polar Transformation

The channel polarization or the polarization transform is based on multiple recursive

concatenations of input manipulations which transform the physical channels into virtual

channels with capacities that either goes to 1 or to 0. Namely the virtual channel polarize

to 0 or 1. We will present three methods to describe the polar code transformation:

1) Algebraic - Mathematically, this can be defined as:

[

x1, . . . , xn

]

=
[

u1, . . . , un

]

G
⊗ log2(n)
2 (2)

where

G2 =




1 0

1 1



 (3)

and G⊗n
2 is the Kronecker product of G2 with itself n times define as

G⊗n
2 = G2 ⊗G2 . . . G2 (n times) (4)

Definition 1 (Kronecker Product) The Kronecker Product of two matrices

A ∈ R
m×n,B ∈ R

p×q is A⊗B ∈ R
mp×nq is defined by

A⊗B =










[A]1,1 B [A]1,2 B · · · [A]1,n B

[A]2,1 B [A]2,2 B · · · [A]2,n B
...

...
. . .

...

[A]m,1 B [A]m,2 B · · · [A]m,n B










. (5)

12 Part B-4

Example 2 Algebraic polar code transformation n=2,4,8

[

x1 x2

]

=
[

u1 u2

]




1 0

1 1





︸ ︷︷ ︸

G2

=
[

u1 ⊕ u2 u2

]

(6)










x1

x2

x3

x4










=










u1

u2

u3

u4



















1 0 0 0

1 1 0 0

1 0 1 0

1 1 1 1










︸ ︷︷ ︸

G⊗2

2

=










u1 ⊕ u2 ⊕ u3 ⊕ u4

u2 ⊕ u4

u3 ⊕ u4

u4










T

(7)






















x1

x2

x3

x4

x5

x6

x7

x8






















=






















u1

u2

u3

u4

u5

u6

u7

u8











































1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0

1 0 0 0 1 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1






















︸ ︷︷ ︸

G⊗3

2

=






















u1 ⊕ u2 ⊕ u3 ⊕ u4 ⊕ u5 ⊕ u6 ⊕ u7 ⊕ u8

u2 ⊕ u4 ⊕ u6 ⊕ u8

u3 ⊕ u4 ⊕ u7 ⊕ u8

u4 ⊕ u8

u5 ⊕ u6 ⊕ u7 ⊕ u8

u6 ⊕ u8

u7 ⊕ u8

u8






















T

(8)

2) Tree - The polar code transformation can be described using a tree. For the construction

using a tree: Starting with the leaf nodes u1, . . . , un, each parent node above is calculated

using the operation:

parentnode = [child1 ⊕ child2, child1]

This operation is applied recursively until we reach the root, which consists of n bits

x1, . . . , xn.

Example 3 Tree Polar Transformation n = 2, 4, 8

The transformation is performed through the mapping (u1, u2) → (u1⊕u1, u1), as shown

in Fig. 3 as a tree and Fig.

12 Part B-5

v1 = [u1 ⊕ u2
︸ ︷︷ ︸

x1

, u2
︸︷︷︸

x2

]

u1 u2

Fig. 3: Polar code tree for n = 2

Polar Transformation n = 4 - Initially, we calculate v1 and v2 similar to n = 2

transformation, and then we apply the same operation recursively with v1 and v2.

s1 = [v1 ⊕ v2, v2] = [u1 ⊕ u2 ⊕ u3 ⊕ u4
︸ ︷︷ ︸

x1

, u2 ⊕ u4
︸ ︷︷ ︸

x2

, u3 ⊕ u4
︸ ︷︷ ︸

x3

, u4
︸︷︷︸

x4

]

v1 = [u1 ⊕ u2, u2]

u1 u2

v2 = [u3 ⊕ u4, u4]

u3 u4

Fig. 4: Polar code tree for n = 4

Polar Transformation n = 8: The transformation is similarly structured, recursively

applying the operation using the tree shown in Fig. 5.

12 Part B-6

[s1 ⊕ s2, s2] (8 bits)

s1 = [v1 ⊕ v2, v2]

v1 = [u1 ⊕ u2, u2]

u1 u2

v2 = [u3 ⊕ u4, u4]

u3 u4

s2 = [v3 ⊕ v4, v4] (4 bits)

v3 = [u5 ⊕ u6, u6]

u5 u6

v4 = [u7 ⊕ u8, u8] (2 bits)

u7 u8

Fig. 5: Polar code tree for n = 8

3) Block Diagram Polar Transformation - Figure 6, Figure 7, and Figure 8 show the

recursive block diagram representations for polar transformation.

Example 4 Block Diagram Polar Transformation n=2,4,8

Fig. 6: Encoding scheme for n = 2

12 Part B-7

Fig. 7: Encoding scheme for n = 4

Fig. 8: Encoding scheme for n = 8

B. Encoder

The encoder transforms a k-bit input into an n-bit output where k < n. This process

involves assigning values based on channel reliability, where ’good’ channels carry data

12 Part B-8

and ’frozen’ channels remain constant, and encode it using polar transformation.

Polar Code Encoding Algorithm:

1) Initialization: Begin by constructing a 2n × 2n polarizing matrix Gn using the

Kronecker power of the basic polarizing matrix, G2 =




1 0

1 1



. For instance, for

n = 3, G3 becomes an 8× 8 matrix.

2) Channel Selection: Once Gn is formed, select the top k channels based on their

reliability. These ’good’ channels are prioritized for data transmission, while the

remaining n− k channels are designated as ’frozen’ bits.

3) Input Construction: Construct the input vector un
1 . Dispatch data bits onto the top

k channels and set the remaining n− k channels to 0, representing frozen bits.

4) Data Encoding: Encode the input vector un
1 by multiplying it with the polarizing

matrix G
⊗log2(n)
2 . This multiplication generates the encoded output vector xn

1 , which

contains n bits.

Example 5 Let us illustrate the polar code encoding process using an example where

n = 8 and k = 4. In this case, our system employs four information bits and four frozen

bits.

For a Polar code with n = 8, we need to construct the generator matrix G8. This is

achieved by performing the Kronecker product on the base matrix G =




1 0

1 1



 three

times, because n = 23.

G8 = G⊗3
2 =






















1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0

1 0 0 0 1 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1






















(9)

12 Part B-9

Given the ranking of the channels, the indices of the frozen channels are 1, 2, 3, 5.

Suppose the input bit sequence is u = [f, f, f, d1, f, d2, d3, d4], where f represents a

frozen bit (which is set to 0), and d denotes an information bit.

The encoding process comprises the multiplication of the information bit sequence u

with the generator matrix G8 to yield the codeword x = uG8.

x = uG8 =
[

f f f d1 f d2 d3 d4

]

×G8

=




d1 + d2 + d3 + d4 d2 + d4 d1 + d3 + d4

d4 d2 + d3 + d4 d2 + d4 d3 + d4 d4





After obtaining the codeword x, it is transmitted over the communication channel.

C. Successive Cancellation decoder

Consider the recursive SC decoder for a polar transform of length n, our goal is to

generates an estimate ûn
1 of un

1 by observing the channel output rn1 .We will start by

showing the SC decoder for simple cases of polar codes for n = 2 and n = 4. Then, we

will present the general code for (n,k).

MAP/LLR Decoding: When analyzing the transmission across a channel affected by

noise, it becomes necessary to ascertain the original transmitted bit (0/1) from the received

analog signal. The decoding procedure involves transforming the received signal into

its digital representation through the utilization of the soft decision concept. Given the

received bit r the soft decision can be calculated as follows

lu =

(
P (u = 1|r)

P (u = 0|r)

)

(10)

where P (u = i|r) is the posterior probability of u = i given the channel output r, and

therefore lu is the log of posterior ration of u.

Using Bayes rule, it can be written as

12 Part B-10

lu = log

(
P (r|u = 0)P (u = 0)

P (r|u = 1)P (u = 1)

)

= log

(
P (r|u = 0)

P (r|u = 1)

)

+ log

(
P (u = 0)

P (u = 1)

)

= LLR(u) + L(u)prior

(11)

where the first term is the log-likelihood ratio (LLR) of the bit u, and the second term

is the prior ratio of u, In many cases in communication, the bits are uniformly distributed,

i.e. P (u = 1) = P (u = 0) and therefore

lu = LLR(u) (12)

It can be seen that the sign of the lu represents the hard decision of bits. If it is positive

then the bits is 0, otherwise it is 1. The magnitude of the LLR represent the reliability

of that decision.

Example 6 Let U be Phase Shift Keying (BPSK) in which 0 is mapped to 1, and 1 is

mapped to -1, and the channel output is Additive White Gaussian Noise (AWGN) given

by R = U + Z where Z ∼ N (0, σ2), the LLR is equal to

LLR(u) = log

(
P (r|u = 0)

P (r|u = 1)

)

(Gaussian)
= log





1√
2πσ2

exp
(

− (r−1)2

2σ2

)

1√
2πσ2

exp
(

− (r+1)2

2σ2

)





=
2r

σ2

= r · (positive factor)

(13)

Lemma 1 Repetition code LLR - By extension, for n inputs xn
1 (repetition code u =

12 Part B-11

x1, . . . , u = xn) we get:

LLR(u) = log
P (u = 1|r1, r2, ..., rn)

P (u = 0|r1, r2, ..., rn)

= log
(

e(r1+r2+···+rn)· 2

σ
2

)

= (r1 + r2 + · · ·+ rn) ·
2

σ2

= (r1 + r2 + · · ·+ rn) · (positive factor)

(14)

Lemma 2 Parity check LLR - The LLR(u) for the case that u = x1 ⊕ x2, and the

channel system (BPSK) describe in Fig. 9 is

LLR(u) = 2 tanh−1(tanh
(r1
2

)

tanh
(r2
2

)

) ≈ sign(r1)sign(r2)min(|r1|, |r2|) (15)

The proof is given in Appendix

W

W

x1

x2

r1

r2

Fig. 9: diagram problem example u = x1⊕ x2

Example 7 SC polar code decoding for n=2 with BPSK + AWGN

Let’s illustrate the SC polar code decoding for n = 2 with BPSK + AWGN. We apply

the polar encoder G2 and send x1, x2 through the channel, receiving r1 and r2(Fig. 10).

Now, we want to decode u1, u2.

The stages for SC decoding n=2 are:

1) Calculate LLR(û1), we know that û1 = x1⊕x2 therefore from equation 20 (lemma

2 Parity check LLR)the LLR is LLR(û1) = f(r1, r2).

12 Part B-12

Fig. 10: Polar code decoding steps for n = 2 (from right to left: step 1, 2, 3)

2) Calculate û1 using the threshold method: if f(r1, r2) < 0, then û1 = 1; otherwise,

û1 = 0 and send û1 to the right side. Next, calculate LLR(û2) (repetition code

equation 14 lemma 1 Repetition code):

LLR(û2) = g(r1, r2, û1) =







r2 + r1 if û1 = 0

r2 − r1 if û1 = 1
= r2 + (1− 2û1) · r1

3) Calculate û2 using the threshold method: if g(r1, r2, û1) < 0, then û2 = 1;

otherwise, û2 = 0.

Example 8 SC decoder for n=4 BPSK + AWGN

In this case, the steps are:

1) Step 1: Calculate the LLRs for the bits [x11, x12, x21, x22] = [u1⊕u2⊕u3⊕u4, u2⊕

u4, u3 ⊕ u4, u4] based on received LLRs (r1, r2, r3, r4).

2) Step 2: Calculate LLR(v1) (left side) where v1 = [u1⊕u2, u2]. Use LLR(u1⊕u2) =

f(r1, r3) and LLR(u2) = f(r2, r4).

3) Steps 3-5: Similar to SC polar decoder for n = 2 starting with [f(r1, r3), f(r2, r4)]

instead of [r1, r2].

4) Steps 6-7: Calculate û2 and v̂1 and send it back to the parent node.

5) Step 8: The right side is a repetition code, so calculate LLR(v2) where v2 =

[u3 ⊕ u4, u4]:

LLR(v2) = [g(r1, r3, u1 ⊕ u2
︸ ︷︷ ︸

v11

), g(r2, r4, u2
︸︷︷︸

v12

)]

12 Part B-13

 1

2

3

4

5

6

7

8

9

10

11

12

13

Fig. 11: SC Polar code n=4 diagram

6) Steps 9-12: Similar to SC decoder for n = 2 same as Step 3-5

Successive Cancellation (SC) Decoder for a General (n,k) Polar Code: Having

discussed the SC decoder for n = 2, 4, we now define it for a general (n, k) code. We

will start by demonstrating the operations at interior nodes as shown in Fig. 12.

Fig. 12: SC decoder: operations in an interior node

Step L: This step comes into operation when the node receives a set of LLRs L =

[L1, L2, . . . , LM] from the parent. In this step, L is sent to the left child, and the LLRs

are calculated using f(L1:M/2, L(M/2+1):M). Here, the vector L is divided into two halves:

L1:M/2 and L(M/2+1):M . The computed M/2 LLR values are then sent to the left child

12 Part B-14

node.

f(a1:p, b1:p) = [f(a1, b1), f(a2, b2), . . . , f(ap, bp)] (16)

f(r1, r2) = sgn(r1) · sgn(r2) ·min(|r1|, |r2|) (17)

Step R: This step is activated when it receives decisions ûi from the left child. Once

the left child completes its processing, it sends the bits back to its parent. In this step, the

decisions and L are combined using the function g. It computes M/2 LLRs and sends

them to the right child node.

g(a1:p, b1:p, c) = [g(a1, b1, c), g(a2, b2, c), . . . , g(ap, bp, c)] (18)

g(r1, r2, b) = r2 + (1− 2b)r1 (19)

Step U: This step comes into operation when the parent receives decisions ûi from

the right child. With the decisions already received from the left child, it combines these

decisions and sends them back up to the parent node.

Decision in a leaf node:

if i is a frozen position: ûi = 0 (ignoring LLR(ui))

if i is a message position: ûi = 0 if LLR(ui) ≥ 0; ûi = 1 if LLR(ui) < 0

Sequence of operations:

The decoder works in a certain sequence, starting at the root. At each node, the following

steps are performed (when it is activated (receives LLRs)):

• If not a leaf, do the following in sequence:

– Perform Step L and go to the left child.

– When a decision is received from the left child, perform Step R and go to the

right child.

– When a decision is received from the right child, perform Step U and go to the

parent.

12 Part B-15

• If a leaf, make a decision (Decision in a leaf node) and go to the parent.

Example 9 (16,10) Polar Code using the sequence of operations for general (n,k)

Fig. 13 presents the SC polar decoding for a (16,10) code. Initially, there are 16 LLRs

(r(16)) that the root receives from the channel. It performs Step L in its first step, it goes

to the left child, activating the left child node and sending only 8 LLRs using Step L. This

is shown in the tree as (1
︸︷︷︸

sequence

L
︸︷︷︸

step

: L(8)
︸︷︷︸

LLR′s

) in the line between the nodes. Sequences 2-4

are again Step L (whenever a node gets activated, it always performs Step L first). We

continue performing Step L until we arrive at the leaf, then we make a decision at the

leaf and send it back. Then, in sequence 5, Step R is performed, and the decision is sent

back (Step U is not shown in the diagram, but it is assumed to operate after receiving

the two leaf decisions under the activated node). The process then continues in the same

way as I described.

Fig. 13: SC decoder (16,10) example sequence of operations. The sequence, step and

LLR’s size shows is shown in the line between the nodes(1
︸︷︷︸

sequence

L
︸︷︷︸

step

: L(8)
︸︷︷︸

LLR′s

) .

D. Successive Cancellation List Decoding (SCL)

The motivation behind this method is to improve the performance of Successive

Cancellation (SC) decoding by aiming for the maximum likelihood path. Instead of

12 Part B-16

producing a single path estimate of ûi, . . . , ûn which may contain errors, list decoding

generates a list of possible paths. To choose the best path from the list, methods such

as the sum of Log-Likelihood Ratios (LLRs) or Cyclic Redundancy Checks (CRC) can

be used. Although this method adds complexity, it provides significant improvements in

performance.

List Algorithm - The SCL decoder utilizes a parameter L, called the list size (always

a power of two). A SCL decoder keeps track of several decoding results instead of just

one, in fact for L = 1 we obtain the SC again. Instead of deciding to set the value of

uu , it takes both options. i.e. when the polar SC decoder makes decisions, it considers

both possible values for each bit and assigns a Decision Metric (DM) as follows:

If L(ui) ≥ 0 :







ûi = 0 has DMi = 0

ûi = 1 has DMi = |L(ui)|

If L(ui) < 0 :







ûi = 1 has DMi = 0

ûi = 0 has DMi = |L(ui)|

Then we save the all optional paths. We repeat this process every time a decision is

made, until we have more paths than the desired list size (L). We then select the L paths

according to the Path Metrics (sum of DM on a path of choices) and prune the others

(discard the paths with high Path metric). This process is repeated until the decision for

un is made. Finally, we choose the path with the smallest Path Metric to be our estimated

information data.

Example 10 Let us try now to make an example for L = 4 and following Fig. 14. we

assume n = 4 and all bits are unforzen. In (a) teh decoding starts and the first bit can

be either 0 or 1. In the second step (b) bit assumes either 0 or 1 thus the possible words

are 00, 01, 10, 11 but the nomber of path is not greater then L = 4 so we don’t need to

prune, yet. (c) shows the all possible options for the first, second and third bit but now

the paths are 8 so we must keep track of only the L = 4 most likely paths (with lowest

Path metrics). (d) shows that we keep only the words 010, 011, 100, 111. Decoding list

12 Part B-17

algorithm continues for the fourth bit in (e); however, the paths are 8 which is too much

so it prunes for the best L = 4 paths in (f). Finally, we obtain the codewords 0100, 0110,

0111, 1111 , In the last state, we determine our estimate ûn
1 using either path metrics or

CRC (if CRC parity bits are added).

Fig. 14: SCL decoding - Evolution of decoding paths for L = 4

12 Part B-18

REFERENCES

[1] E. Arikan, “Channel polarization: A method for constructing capacity-achieving

codes for symmetric binary-input memoryless channels,” IEEE Transactions on

Information Theory, vol. 55, no. 7, pp. 3051–3073, Jul. 2009.

[2] NPTEL-NOC IITM, Nptel-noc iitm youtube channel, Accessed: 2024-07-16, 2024.

[Online]. Available: https://www.youtube.com/user/nptelhrd.

12 Part B-19

III. APPENDIX

Proof of lemma 1

We prove that the LLR(c1) for the case that c1 = c2 ⊕ c3 and the channel system

(BPSK) described in Fig. 9 is:

l1 = 2 tanh−1

((

tanh(
l2
2
)

)

tanh

(
l3
2

))

(20)

Given c1 = c2 ⊕ c3, let us define the LLRs as follows:

l2 = log








Pr(c2 = 0|r2)
︸ ︷︷ ︸

P2

Pr(c2 = 1|r2)
︸ ︷︷ ︸

1−P2








l3 = log








Pr(c3 = 0|r3)
︸ ︷︷ ︸

P3

Pr(c3 = 1|r3)
︸ ︷︷ ︸

1−P3








Given P2 and P3, and knowing that c1 = c2 ⊕ c3, we have:

P1 = P2P3 + (1− P2)(1− P3)

1− P1 = P2(1− P3) + (1− P2)P3

Therefore:

P1−(1−P1) = P2(P3−(1−P3))+(1−P2)((1−P3)−P3) = (P2−(1−P2))(P3−(1−P3))

l1 = log

(
P1

1− P1

)

P1 − (1− P1) = (P2 − (1− P2))(P3 − (1− P3))

12 Part B-20

P1 − (1− P1)

P1 + (1− P1)
=

P2 − (1− P2)

P2 + (1− P2)
·
P3 − (1− P3)

P3 + (1− P3)

1− 1−P1

P1

1 + 1−P1

P1

=
1− 1−P2

P2

1 + 1−P2

P2

·
1− 1−P3

P3

1 + 1−P3

P3

Using the fact that:

tanh(x) =
1− e−2x

1 + e−2x

We can write:

1− e−l1

1 + e−l1
=

1− e−l2

1 + e−l2
·
1− e−l3

1 + e−l3

Therefore:

tanh

(
l1
2

)

= tanh

(
l2
2

)

· tanh

(
l3
2

)

=⇒ l1 = 2 tanh−1

(

tanh

(
l2
2

)

· tanh

(
l3
2

))

Since tanh is an odd function, if x < 0 then tanh(x) < 0, otherwise tanh(x) > 0.

Thus, the sign is:

sign(l1) = sign(l2) · sign(l3)

For the absolute value:

tanh

(
|l1|

2

)

= tanh

(
|l2|

2

)

· tanh

(
|l3|

2

)

Taking the logarithm:

log(tanh

(
|l1|

2

)

) = log(tanh

(
|l2|

2

)

) + log(tanh

(
|l3|

2

)

)

Let f(x) = | log(tanh(|x|/2))|, and note that f−1(x) = f(x). Therefore:

f(|l1|) = f(|l2|) + f(|l3|) =⇒ |l1| = f(f(|l2|) + f(|l3|)) ≈ min(|l2|, |l3|)

12 Part B-21

Thus, we obtain:

l1 = 2 tanh−1

(

tanh

(
l2
2

)

tanh

(
l3
2

))

≈ sign(l2)sign(l3)min(|l2|, |l3|)

