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Introduction to Information Theory

Lecture 12 - Polar Codes Part a

Lecturer: Haim Permuter Scribe: Yhonatan Gayer, Yakov Gusakov

I. INTRO TO POLAR CODES

In this lecture, we present an introduction to Polar Codes. Polar Codes were first

introduced by Arikan Erdal in 2009 [1]. In 2016 they were already accepted as part of

5G channel coding technology. Over the course of three lectures, we will explore the

effectiveness of this code, and study how it is used to enhance capacity and reliability.

Our discussion begins with a motivation for polar coding, followed by a step-by-step

construction of the initial polarization block using an intuitive example on the erasure

channel (BEC). Hence this lecture will be on polar codes in general but will focus on

the example of BEC. Subsequently, we generalize this algorithm to encompass n inputs

and any type of channel. The content of these lecture notes is based on the foundational

work by Arikan [1], complemented by the insights from [2] and [3].

II. REPETITION CODING

To improve the accuracy of estimation of channel input, a proposed approach involves

utilizing multiple instances of the same channel. By repeating the use of the channel a

total of n times, we can increase our confidence in the correctness of the estimation. This

strategy is depicted in Fig. 1 as the Repetition Coding Scheme, where W represents the

channel.

The code can be analyzed in terms of the error probability Pe and the rate. To

assess the reliability of the channel, we’ll be examining the error probability Pe, for

which limn→∞ Pe = 0. This property holds true for most channels, including BSC,

BEC. Regarding the rate, each bit of information is transmitted approximately n times

(depending on the specific channel). Consequently, the rate is significantly lower than
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Fig. 1: Repetition Coding Scheme.

the capacity, which is given by Ctotal = nC(W ), where C(W ) denotes the capacity of

the channel W .

Example 1 (Repetition Code with n = 2 and BEC (p) Channels) Consider a repeti-

tion code with n = 2 and BEC (p) channels, meaning we transmit each symbol twice.

We also assume that U ∼ Ber
(
1
2

)
. For example

0011 7→ 00001111.

This scenario is illustrated in Fig. 2.

Fig. 2: Repetition code scheme with two BEC (p) channels.
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Example 2 (Rate and Reliability of Repetition code with BEC (p) Channel) First

we will examine the reliability,

lim
n→∞

Pe = lim
n→∞

P (Û 6= U)

(a)
= lim

n→∞
P (Y1 =?, ..., Yn =?)

(b)
= lim

n→∞
(p)n

(c)
= 0,

(1)

where

(a) follows from the requirement that Yk 6=? for some k to determine U’s value.

(b) follows from BEC channel having P (Y1 =?) = p, and in a memory-less channel

each use of the channel is independent.

(c) holds since 0 < p < 1.

Now we will examine its rate for a constant n,

R = 1 << n(1− p) = nCBEC , (2)

where nCBEC is the highest achievable rate when using n BEC (p) channels. Hence, it

can be inferred that Repetition coding offers reliability at the cost of reduced speed.

III. A BUILDING BLOCK OF POLAR CODING

We saw that the repetion code can transform a channe W with erasure p into a clean

channel with erasure arbitrary close to zero. However, the repetition coding is not optimal

in terms of rate; it decreases the rate signifiacntly. We will now propose an alternative -

polar codes. The construction of polar code is based on multiple recursive concatenations

of input manipulations which transform the physical channels into virtual channels with

capacities [1] that either goes to 1 or to 0. Namely the virtual channel polarize to 0 or 1.

On the channels that the capacity is 1 we will transmit the our bits of information and

the channels with capacity 0 we will just send freezed bits, namely, fixed bit determined

a head of time with no information. Like all 0. We will see that the polar codes is an

optimal code, namely, the portion of virtual channels with capacity 1 is C(W ), i.e., the
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capacity of W , and the rest of the virtual channel have a capacity 0 hence wont be used

to transmit information.

We begin with the basic polarization building block for two usage of the channel,i.e.,

n = 2, and later see how it generalize it to any dimension n. In this section we focus

of polar coding scheme with n = 2 inputs as depicted in Fig. 3 which is the building

block of any general polar code. The inputs are two independent uniformly distributed

variables U ∼ Ber
(
1
2

)
and V ∼ Ber

(
1
2

)
. A basic manipulation on the two binary inputs

U and V is

X1 = U ⊕ V

X2 = V,
(3)

or in vector notation:

[

X1 X2

]

=
[

U V

]




1 0

1 1





︸ ︷︷ ︸

G

. (4)

Fig. 3: Polar Code Scheme with two usage of the channel W . For instance, the channel

W maybe the BEC.

The signals X1 and X2 are transmitted over identical and independent channel W

which can be for example the BEC (p) channels. The output of the channel are Y1 and

Y2. The transformation of the vector [U, V ] to [X1, X2] is done using a multiplication with

the matrix G on the Binary field F2, where the alphabet is 0 and 1 and the summation is

mod 2 summation. Note that the matrix G is invertible and G ·G = I , hence, G−1 = G.

Conservation of information: Since (U, V ) has a one-to-one transformation to

(X1, X2) the total mutual information does not change, namely

I (U, V ; Y1, Y2) = I (X1, X2; Y1, Y2) . (5)
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This follow from the following lemma:

Lemma 1 (One-to-one transformation does not change mutual information) Let

z = f(x) be one to one transformation. Namely, there exists an f−1 s.t. x = f−1(z).

Then for any r..v Y,

I(Z; Y ) = I(X ; Y ) (6)

Prove this lemma as an exercise.

Now, lets show that the transformation can achieve twice the capacity of the channel

for the case of n = 2:

I (U, V ; Y1, Y2)
(a)
= I (X1, X2; Y1, Y2)

(b)
= I (X1, X2; Y1) + I (X1, X2; Y2|Y1)

(c)
= I (X1; Y1) + I (X1, X2; Y2|Y1)

(d)
= I (X1; Y1) + I (X2; Y2)

= 2CBEC ,

(7)

where

(a) is due to the transformation from (U, V ) to (X1, X2) being invertible and Lemma

1.

(b) follows from the chain rule for mutual information.

(c) follows from the memoryless of the channel and no feedback, i.e., P (y1|x1, x2) =

P (y1|x1)

(d) follows and the fact that Y1 is independent of Y2 since U is Bernouli(1
2
), hence

H(Y2|Y1) = H(Y2), and from the memoryless of the channel that implies that

H (Y2|Y1, X1, X2) = H (Y2|X2).

Now, we analyse the channel’s Mutual Information by utilizing the chain rule,

I (U, V ; Y1, Y2)
(a)
= I (U ; Y1, Y2) + I (V ; Y1, Y2|U)

(b)
= I (U ; Y1, Y2) + I (V ; Y1, Y2, U) ,

(8)

where

(a) follows from the chain rule for mutual information.
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(b) holds since U and V are independent.

Example 3 (Polar Code with two BEC (p) Channels) Now lets us consider the case

of polar codes n = 2 where the channel is BEC. The first term represents a channel

U
W−

−→ Y1, Y2 with mutual information

I (U ; Y1, Y2) = H (U)−H (U |Y1, Y2)

(a)
= 1−

∑

y1∈{0,1,?}

∑

y2∈{0,1,?}

PY1,Y2
(y1, y2)H (U |Y1 = y1, Y2 = y2)

(b)
= 1− PY1,Y2

(y1 = x1, y2 =?)− PY1,Y2
(y1 =?, y2 = x2)− PY1,Y2

(y1 =?, y2 =?)

(c)
= 1− (1− p)p− p(1− p)− p2

= (1− p)2

< CBEC ,

(9)

where

(a) follows from H (V ) = 1 when V ∼ Ber
(
1
2

)
+ definition of the conditional entropy.

(b) holds since the only case where U is known is when we know both Y1 and Y2, in that

case H (U |Y1 = y1, Y2 = y2) = 0, in all other cases H (U |Y1 = y1, Y2 = y2) = 1.

(c) follows from PY1,Y2
(y1, y2) = PY1

(y1)PY2
(y2) since the channels are independent and

we have shown that X1, X2 are independent, making Y1, Y2 independent as well.

Similarly, the second term in (8) represents a channel V
W+

−→ Y1, Y2, U with mutual

information

I (V ; Y1, Y2, U)
(a)
= H (V )−H (V |Y1, Y2, U)

(b)
= 1−

∑

y1∈{0,1,?}

∑

y2∈{0,1,?}

PY1,Y2
(y1, y2)H (V |Y1 = y1, Y2 = y2, U)

(c)
= 1− PY1,Y2

(y1 =?, y2 =?)

(d)
= 1− p2

> CBEC ,

(10)

where

(a) follows from the chain rule for mutual information.
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(b) follows from H (V ) = 1 when V ∼ Ber
(
1
2

)
+ definition of the conditional entropy.

(c) holds since the only case where V is unknown is when we don’t know know

both Y1 and Y2, in that case H (V |Y1 = y1, Y2 = y2, U) = 1, in all other cases

H (V |Y1 = y1, Y2 = y2, U) = 0.

(d) follows from PY1,Y2
(y1, y2) = PY1

(y1)Py2(y2).

Note that the sum of I (U ; Y1, Y2) + I (V ; Y1, Y2, U) equals, as expected from eq. (7), to

2CBEC

In total, looking at equation (8), we can interpret the two channel scheme depicted in

Fig. 3 as an equivalent scheme composed of two parallel ”virtual” channels:

• The W− Channel, which corresponds to a BEC with parameter 1− (1− p)2.

• The W+ Channel, which corresponds to a BEC with parameter p2.

The Equivalent Scheme illustrated in Fig. 4 demonstrates the processing of independent

variables U and V to generate the output sequences Y1 and Y2.

Fig. 4: Equivalent Scheme using Virtual Channels W− and W+.

The comparison yields four significant conclusions:

• The capacity of Channel W− is lower than CBEC .

• The capacity of Channel W+ is greater than CBEC .

• Decoding of Channel W− requires knowledge of Y1 and Y2.

• Decoding of Channel W+ requires knowledge of Y1, Y2, and U .

Based on our analysis of the scheme depicted in Fig. 3, we conclude that it can be

effectively represented as two parallel channels, namely W− and W+. This finding is

noteworthy as it allows us to create a channel with a higher capacity compared to the

original BEC(p) channel, while maintaining the same overall scheme capacity.
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IV. POLAR CODING OF SIZE n

In the previous section, we demonstrated the polar coding scheme for the case where

n = 2 and using the BEC(p) channel. In this section, we will generalize this approach

to all channels and for all n = 2N with N ≥ 1. By replicating the process outlined in the

aforementioned example, we can further enhance the capacities of individual channels

while simultaneously diminishing others.

Definition 1 (Kronecker Product) The Kronecker Product of two matrices

A ∈ R
m×n,B ∈ R

p×q is A⊗ B ∈ R
mp×nq is defined by

A⊗ B =










[A]1,1B [A]1,2B · · · [A]1,n B

[A]2,1B [A]2,2B · · · [A]2,n B
...

...
. . .

...

[A]m,1B [A]m,2B · · · [A]m,nB










. (11)

Notice that the Kronecker product of the transformation matrix with itself is

G2 := G⊗2 = G⊗G =




1 0

1 1



⊗




1 0

1 1



 =










1 0 0 0

1 1 0 0

1 0 1 0

1 1 1 1










. (12)

This matrix defines the manipulation on n = 4 inputs, U1, U2, U3, U4, generating

[

X1, X2, X3, X4

]

=
[

U1, U2, U3, U4

]










1 0 0 0

1 1 0 0

1 0 1 0

1 1 1 1










=










U1 ⊕ U2 ⊕ U3 ⊕ U4

U2 ⊕ U4

U3 ⊕ U4

U4










T

. (13)

The polar coding scheme for n = 4 is depicted in Fig. 5. This scheme is equivalent to

4 virtual channels W++,W+−,W−+ and W−−, where the signs + and − relate to the

increase or decrease in the capacity of the channels.

Example 4 (Polar Code with n = 4 BEC (p) Channels) If we take the channels W

to be BEC (p), as we add more recursion layers we will get a polarization of virtual

channel capacities as depicted in Fig. 6.
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Fig. 5: Polar Coding Scheme with n = 4 Channels.

Fig. 6: Capacity of Virtual Channels as we add layers of BEC (p) channels.

Generalizing this to n = 2N inputs {Ui | 1 ≤ i ≤ n} we get

X = UGN ⇐⇒ Xj =
n∑

i=1

[
G⊗N

]

i,j
Ui, (14)

creating a collection of n virtual channels {Wi | 1 ≤ i ≤ n}.

V. MAIN THEOREM OF POLAR CODES

Theorem 1 As the number of channels n grows to infinity, the capacity of the virtual

channels converges to either 0 or 1. The ratio between the amount of ”clean” (C ≈ 1)
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and ”dirty” (C ≈ 0) channels depends on the capacity C (W ) of the original channels:

∀δ > 0 :

lim
n→∞

|C (Wi) > 1− δ|

n
= C (W )

lim
n→∞

|C (Wi) < δ|

n
= 1− C (W ) .

(15)

The proof is out of scope for this course. Readers can refer to the original paper [1].

Theorem 1 states that we can approach the capacity C = 1 in certain channels as closely

as desired, while in other channels we approach the capacity C = 0, provided that we

choose a sufficiently large value for N . Due to the mathematical complexity associated

with calculating the capacity of each channel, particularly for high orders of n, where

the expressions become exponentially intricate, resorting to Monte Carlo experiments is

an acceptable approach to estimate the capacity or reliability of each channel.

We can utilize the high reliability ”clean” channels with C ≈ 1 to send data.

Question: What do we do with the low reliability ”dirty” channels with C ≈ 0?

Answer: We ”freeze” them, constantly transmitting ’0’. It doesn’t matter what we send

in particular, as long as the decoder knows their value, as they play a crucial role in the

decoding process of the data channels.

VI. DECODING POLAR CODES

Once the data passes through the channel, we want to to decode the channel outputs

Y = [Y1, Y2, . . . , Yn] in the most optimal manner to obtain the best estimate vector

Û =
[

Û1, ..., Ûn

]

for the inputs U = [U1, ..., Un]. In the case of n = 2, depicted in Fig. 3,

we saw that decoding W+ to obtain V̂ required knowledge of Y1, Y2 and U . This means

we must first decode W− and obtain Û before we decode W+. For larger n we also

have to procedurally decode the channels. We will demonstrate the decoding process for

n = 8 channels W = BEC
(
1
2

)
.

The polar coding scheme for n = 8 is depicted in Fig. 7. As we said, the less reliable

channels will be frozen, and ’0’ will be transmitted on them constantly.

Decoding Process:
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Fig. 7: Polar Coding Scheme with n = 8 Channels.

1) Decode U1 (Frozen) → U1 = 0.

2) Decode U2 (Frozen) → U2 = 0.

3) Decode U3 (Frozen) → U3 = 0.

4) Decode U4 (Data!) → We use Y1, . . . , Y8 and U1, . . . , U3 to decode Û4.

5) Decode U5 (Frozen) → U5 = 0.

6) Decode U6 (Data!) → We use Y1, . . . , Y8 and U1, . . . , U3, Û4, U5 to decode Û6.

7) Decode U7 (Data!) → We use Y1, . . . , Y8 and U1, . . . , U3, Û4, U5, Û6 to decode Û7.

8) Decode U8 (Data!) → We use Y1, . . . , Y8 and U1, . . . , U3, Û4, U5, Û6, Û7 to decode

Û7.

In general, we need to know the previous bits Û1, . . . , Ûk−1 to decode Ûk, so the decoding

must be done sequentially.
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