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I. INTRO TO POLAR CODES

In this paper, we present an introduction to Polar Codes. Over the course of two

lectures, we will explore the effectiveness of this algorithm, which involves manipulating

a known channel to enhance capacity and reliability in a non-deterministic manner.

Our discussion begins with a motivation for improvement, followed by a step-by-step

construction of the initial polarization block using an intuitive example. Subsequently,

we generalize this algorithm to encompass multiple blocks and all types of channels. The

content of this paper is based on the foundational work by Arikan [1], complemented by

the insights from [2] and [3].

II. REPETITION CODING

To improve the accuracy of channel estimation, a proposed approach involves utilizing

multiple instances of the same channel. By repeating the use of the channel a total of n

times, we can increase our confidence in the correctness of the estimation. This strategy

is depicted in Fig. 1 as the Repetition Scheme, where P represents the channel. The

scheme can be analyzed in terms of Pe and rate.

To assess the reliability of the channel we examining the error probability Pe, which

holds limn→∞ Pe = 0, This property holds true for most channels, including BSC, BEC,

and BCC. regarding the rate, each bit of information is transmitted approximately n times

(depending on the specific channel). Consequently, the rate is significantly lower than

the capacity, which is given by Ctotal = nC(P ).
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Fig. 1. Repetition Coding Scheme

Example 1 (Rate and Reliability of Repetition code with BEC(p) Channel) first we

will examine the reliability,

lim
n→∞

Pe = lim
n→∞

P (Û ̸= U)

(a)
= lim

n→∞
P (Y1 =?, ..., Yn =?)

(b)
= lim

n→∞
(1− p)n

(c)
= 0

(1)

• (a) In BEC channel it’s enough that Yk ̸=? for some k to determine U ’s value.

• (b) In BEC channel P (Y1 =?) = 1 − p, in a memoryless channel each use of the

channel is independant, there for the equality holds.

• (c) The equality hold for p > 0.

and now we will examine its rate for a constant n,

R =
1

n
<< n(1− p) = nCBEC (2)

Hence, it can be inferred that Repetition coding offers reliability at the cost of reduced

speed.
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Now we will show an example of repetition code with n = 2, the purpose of this

example will be clearer in the next section, where we will use similar scheme with small

modifications, and big improvment.

Example 2 (Repetion Code with n = 2, and BEC Channel)

Here is an example of repetition coding with specific parameters: n = 2 , BEC(p)

channel, and U ∼ Unif(0, 1). This scenario is illustrated in Fig.2.

Fig. 2. Repetition code scheme with two BEC channels

Each channel BEC(p) Capcity denotes by CBEC = 1 − p as we saw in the former

lecture. The maximum Capcity of two BEC(p) channels denotes by Ctotal = 2(1 − p).

The channel’s Mutual Information can lower bounded,

I (U ;Y1, Y2)
(a)
= I (U ;Y1) + I (U ;Y2|Y1)

(b)
= CBEC + I (U ;Y2|Y1)

≥ CBEC

(3)

• (a) chain rule

• (b) BEC channel reach capcaity for uniform distrinution as in this case.

and also can upper bounded,

I (U ;Y1, Y2)
(a)
= I (X1, X2;Y1, Y2)

(b)
= I (X1;Y1, Y2) + I (X2;Y1, Y2|X1)

≤ 2CBEC

(4)
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• (a) U = Y1 and U = Y2

• (b) chain rule

Overall, from (4) and (3) we can infer that the Described Scheme’s Rate does not

reach capacity, and has a gap of 2CBEC − I (X2;Y1, Y2|X1)

III. BUILDING BLOCK OF POLAR CODING

After observing that Repetition coding is not optimal in terms of Rate, we will now

propose an alternative solution that incorporates certain modifications, which later on we

will see that improves capacity.

Example 3 (Polar Code with two BEC Channels) We present an example of polar

coding with particular parameters: n = 2, a BEC with parameter p, and two independent

uniformly distributed variables U ∼ Unif(0, 1) and V ∼ Unif(0, 1). The scenario is

depicted in Fig.3, where X2 = U ⊕ V and X1 = U .

Fig. 3. Polar code scheme with two BEC channels

The channel’s Mutual Information can be analyzed in two ways. Firstly, we will

examine its value

I (U, V ;Y1, Y2)
(a)
= I (X1, X2;Y1, Y2)

(b)
= I (X1;Y1, Y2) + I (X2;Y1, Y2|X1)

(c)
= I (X1;Y1, Y2) + I (X2;Y1, Y2)

(d)
= I (X1;Y1) + I (X2;Y2)

= 2CBEC ,

(5)
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• (a) There is a 1 to 1 transformation from (U, V ) to (X1, X2).

• (b) Chain rule.

• (c) X1 is independant of X2, since X2 = V ⊕U and both U and V are Bernoli(1
2
)

and independant.

• (d) Y1 is independant of X2, and Y2 is independant of X1.

which proves that the channel reach it’s Capacity.

Now, we will observe the channel’s Mutual Information by utilizing the chain rule,

I (U, V ;Y1, Y2) = I (V ;Y1, Y2) + I (U ;Y1, Y2|V ) (6)

The left term can be further simplified,

I (V ;Y1, Y2) = H (V )−H (V |Y1, Y2)

(a)
= 1−

1∑
y1=0

1∑
y2=0

PY1,Y2 (y1, y2)H (V |Y1 = y1, Y2 = y2)

(b)
= 1− PY1,Y2 (y1 =?, y2 =?)H (V |Y1 =?, Y2 =?)

(c)
= 1− p2

< CBEC

(7)

• (a) H (V ) when U ∼ Unif(0, 1).

• (b) When Y1 ̸=? or Y2 ̸=? V is known and therefore H (V |Y1 = y1, Y2 = y2) = 0.

• (c) When Y1 =? or Y2 =? we have no information on V and therefore

H (V |Y1 = y1, Y2 = y2) = 1 as V ∼ Unif(0, 1).
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Likewise, the right term can be further reduced,

I (U ;Y1, Y2|V )
(a)
= H (U |V )−H (U |Y1, Y2, V )

(b)
= H (U)−

1∑
y1=0

1∑
y2=0

PY1,Y2 (y1, y2)H (U |Y1 = y1, Y2 = y2, V )

(c)
= 1− PY1,Y2 (y1 = x1, y2 =?)− PY1,Y2 (y1 =?, y2 = x2)− PY1,Y2 (y1 =?, y2 =?)

(d)
= 1− (1− p)p− p(1− p)− p2

= (1− p)2

> CBEC

(8)

• (a) Chain rule.

• (b) V is independant with V .

• (c) The only case where U is known is when we know both Y1 and Y2, in that case

H (U |Y1 = y1, Y2 = y2, V ) = 0, in all other cases H (U |Y1 = y1, Y2 = y2, V ) = 1.

• (d) PY1,Y2 (y1, y2) = PY1(y1)Py2(y2).

By referring to equation (6), we can interpret the Two-Channel Scheme depicted in

Fig.3 as an equivalent scheme composed of two parallel channels (using that BEC(p)

channel has a capacity of CBEC = 1− p):

• The W− Channel, which corresponds to a BEC with parameter p2.

• The W+ Channel, which corresponds to a BEC with parameter 1− (1− p)2.

The Equivalent Scheme described in Fig. 4

The Equivalent Scheme illustrated in Fig. 4 demonstrates the processing of independent

variables U and V to generate the output sequences Y1 and Y2.

Fig. 4. Equivalent Scheme to the Scheme in Fig.3
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The comparison yields four significant conclusions:

• The capacity of Channel W− is lower than CBEC .

• The capacity of Channel W+ is greater than CBEC .

• Decoding of Channel W− involves knowing of Y1 and Y2.

• Decoding of Channel W+ involves knowing of Y1, Y2, and U .

Based on our analysis of the scheme depicted in Fig. 3, we conclude that it can be

effectively represented as two parallel channels, namely W− and W+. This finding is

noteworthy as it allows us to create a channel with a lower capacity compared to the

original BEC(p) channel, while maintaining the same overall scheme capacity.

IV. POLAR CODING OF SIZE n

In the previous section, we demonstrated the enhancement of capacity through Polar

Coding for the case where n = 2 and using the BEC(p) channel. In this section, we

will generalize this approach to all channels and for all n = 2m with m ≥ 1.

By replicating the process outlined in the aforementioned example, we can further

enhance the capacities of individual channels while simultaneously diminishing others.

This enables us to effectively analyze and utilize channels with higher capacities as data

channels, while employing the remaining channels as frozen-bits channels, for instance in

the case of n = 4 we will get 4 channels, W++,W+−,W−+,and W−− ,where the signs

+ and − relates to the capacity of the channels. The channels with enlarged capacities

will be counted as data channels, and the channels with low capacities will be counted

as frozen-bits channels.

To facilitate understanding, the decoding process for the case of N = 4 is thoroughly

explained in both Fig. 5 and in (9).
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Fig. 5. Polar Coding, N=4

X1 = U1 ⊕ U2 ⊕ U3 ⊕ U4

X2 = U2 ⊕ U4

X3 = U3 ⊕ U4

X4 = U4

(9)

Theorem 1 As the number of the channels grows, the capacity of each channel converges

to 1 or 0:
∀δ > 0 :

lim
n→∞

∣∣∣C (
P

(n)
i

)
> 1− δ

∣∣∣
n

= C (P )

lim
n→∞

∣∣∣C (
P

(n)
i

)
< δ

∣∣∣
n

= 1− C (P )

(10)

Here, n is the number of channels, P is the original channel, P (n)
i is the i′th channel in

the equivalent form, and C(P ) represents the capacitty of channel P .

The proof of Theorem 1 is out of the scope of this course.

Theorem 1 states that we can approach the capacity C = 1 in certain channels as

closely as desired, while in other channels we approach the capacity C = 0, provided

that we choose a sufficiently large value for N .
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We can utilize the data channels with C ≈ 1, to send data, while in the frozen-bits

channels with C ≈ 0 we will send 0 as it’s doesn’t matter what will be pass through

them, as long the decoder knows what are the values of them. It is important to note

that these frozen-bits channels must still be utilized, as they play a crucial role in the

decoding process of the data channels.

Due to the mathematical complexity associated with calculating the capacity of each

channel, particularly for high orders of n, where the expressions become exponentially

intricate, resorting to Monte Carlo experiments is an acceptable approach to estimate the

capacity or reliability of each channel.

V. POLAR ENCODING

Polar Encoding focuses on efficiently and mathematically simplifying the arrangement

of a bit vector U = [U1, ..., UN ] into a vector of the same size N X = [X1, ..., XN ].

In order to formulated Polar encoding mathematically, we will first make some new

definitions:

Definition 1 The operation ⊙ operates between two matrices as explained here:

A⊙B =


[A]0,0B . . . [A]0,N−1B

... . . . ...

[A]N−1,N−1B . . . [A]N−1,N−1B

 (11)

Where matrix A is of size N × N and [A]i,j is the i, j′th element of matrix A ∀0 ≤

i, j ≤ N − 1

Definition 2 Now let’s define the binary matrix GN , where N = 2m∀1 ≤ m. In the case

of N = 2,

G2 =

1 0

1 1

 . (12)

In the case of N = 2m, GN = GN/2 ⊙GN/2 ∀2 ≤ m. also note that GN operates as a

XOR between the components as demonstrates in (13):

[
X1, X2

]
=

[
U, V

]1 0

1 1

 =
[
U ⊕ V, V

]
(13)
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Using the definitions above, makes it easier to decode U = [U1, ..., UN ] into X =

[X1, ..., XN ] ,as an example the case of N = 4 is presented in (15).

X = UG4 (14)

[
X1, X2, X3, X4

]
=

[
U1, U2, U3, U4

]

1 0 0 0

1 1 0 0

1 0 1 0

1 1 1 1

 =


U1 ⊕ U2 ⊕ U3 ⊕ U4

U2 ⊕ U4

U3 ⊕ U4

U4



T

(15)

VI. POLAR DECODING

Once the data passes through the channel, it becomes necessary to extract the vector of

bits denoted as R = [R1, ..., RN ], which represents the channel outputs. This vector needs

to be decoded in the most optimal manner to obtain the estimated vector Û = [Û1, ..., Û2].

A. Presenting U with X

First, let’s see how to present U with X , which implies how to estimate U from R.

We know that:

[X1, X2] = [U1 ⊕ U2, U2] (16)

which means that,

U1 = X1 ⊕X2 (17)

U2 = X2 and U2 = X1 ⊕ Û1 (18)

Therefore, it’s clear how to decode U1 from R1 and R2. U2 can be decoded in two

ways, as in Equation (18).
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