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Mathematical methods in communication June 16th, 2011

Lecture 12

Lecturer: Haim Permuter Scribe: Eynan Maydan and Asaf Aharon

I. MIMO - M ULTIPLE INPUT MULTIPLE OUTPUT

MIMO is the use of multiple antennas at both the transmitter and reviver to improve communication

performance. It is one of serveral forms of smart antenna technology. MIMO technology has attracted

attention in wireless communication, because it offers significant increases in data throughput and link

range without additional bandwidth or transmit power.
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Fig. 1. MIMO illustration

We have seen in last lectures that for a Gaussian channel withpower constraint,1
n

∑n

i=1 X
2
i ≤ P , and

Gaussian noise ,Z ∼ N (0, σ2), the capacity is defined by

C = max
P (X),E(X2)≤P

I(X,Y ) =
1

2
log(1 +

P

σ2
).

Let’s check the case of parallel several channels for independent noise vectorsZ1, Z2, .., Zm.

In the parallel case, the power constraint is given byPi = 1
n

∑n

j=1 X
2
ij , where,

∑m

i=1 Pi ≤ P with

probability one, and the capacity is defined by

C = max
f(X1,X2,...,XK),E(

∑
k

i=1
X2

i
)≤P

I(X1, X2, ..., XK ;Y1, Y2, ..., YK)
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Fig. 2. Parallel Gaussian channels.

After some calculations (described in lecture 8), we get that

C =
m∑

i=1

1

2
log(1 +

Pi

σ2
i

).

According to ’Water-filling’ algorithm,Pi can be found byPi = [ 1
ν
− σ2

i ]
+ = max(0, 1

ν
− σ2

i ), where

P =
∑

Pi. In MIMO systems, each output is affected by all channel inputs. The power constraint for this

model is given by1
r

∑t

i=1

∑r

j=1 X
2
i,j ≤ P, with probability 1. The channel model can be presented as

following:
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Fig. 3. MIMO

Note: In this section we suppose thatG is deterministic, therefore we can assume thatG is known at

the decoder and encoder.

Mathematically,Yr×1 is defined byYr×1 = Gr×tXt×1 +Zr×1, whereXt×1 is the channel input,Gr×t is

a constant channel gain matrix andZ ∼ N (0,Kz) is the Gaussian noise. The elementGjk representing

the gain of the channel from the transmitter antennaj to the receiver antennak.

Lets assume, without loss of generality, thatZ ∼ N (0, 1) ( We will see later that this assumption do not
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lead to any kind of losses). Indeed, the channelY = GX +Z with a generalKz ≻ 0 can be transformed

into the channel

Ỹ = Kz
− 1

2Y = Kz
− 1

2GX + Z̃

Where,Z̃ = Kz
− 1

2Z ∼ N (0, 1r). SinceKz is a covariance matrix, it is a symmetric matrix, i.eKz = KT
z .

Therefore, we can writeKz as:

Kz = QΛQT

Where, Q is unitary matrix (QQT = 1r ) andΛ is the eigen values matrix which can be described as:

Λ =




λ1 0 . . 0

0 λ2

. .

. .

0 . . . λn




Note that sinceKz is a symmetric matrix, the transpose matrix is equal to the inverted matrix, i.e.

QT = Q−1. Similarly, K
1

2

z = QΛ
1

2QT , where,Λ
1

2 =




√
λ1 0 . . 0

0
√
λ2

. .

. .

0 . . .
√
λn




As we defined above:

Ỹ = Kz
− 1

2Y = Kz
− 1

2GX +Kz
− 1

2Z

Now, let’s calculate the covariance matrix of̃Z = K
− 1

2

Z Z

Kz̃ = E[Z̃Z̃T ] = E[K
− 1

2

z ZZTK
− 1

2

z ] = k
− 1

2

z KzK
− 1

2

z
(a)
= k

− 1

2

z K
1

2

z K
1

2

z K
− 1

2

z = 1r×r

Where,

(a) follows fromKz = QΛQT = QΛ
1

2QTQΛ
1

2QT = K
1

2

z K
1

2

z .

The notation1r×r is the ’identity matrix’ of dimensionr× r. Accordingly, we can conclude that the noise

covariance can be assumed, without loss of generality, to bethe unit matrix.

Now, let’s find the capacity of the model:

C = max∑
Pi≤P

I(X;Y )

(a)
= max

tr(Kx)≤P
I(X;Y )

= max
tr(Kx≤P

h(Y )− h(Y |X)
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= max
tr(Kx)≤P

h(Y )− h(Z)

(b)

≤ 1

2
log[(2Πe)r|KY |]−

1

2
log[(2Πe)r]

=
1

2
log |KY |

Where,

(a) follows fromPi = E[X2
i ], where,X is a vector of dimensiont× 1.

(b) follows from h(Y ) ≤ 1
2 log[(2Πe)

r|KY |], where,r is the dimension ofY , and from the fact thatZ

has Noraml distribution.

In order to find the capacity, we need to maximize the expression 1
2 log |KY | ,or actually, to maximize

KY :

KY = E[(GX + Z)(GX + Z)T ]

= GKXGT + 1

For that reason

max
tr(Kx))≤P

1

2
log |KY | = max

tr(Kx)≤P

1

2
log |GKXGT + 1|

Note: ’SVD’ (Single Value Decomposition) - We know that every squared matrix can be decomposed as

An×n = QΛQ−1. The SVD allows us to decompose unsquared matrix i.e.Gr×t = Ur×rΣr×tV
T
t×t where

U,V are unitary matrices (UUT = 1 , V V T = 1), andΣ is a diagonal matrix. Therefore,

GGT = UΣV TV ΣTUT = UΣΣTUT

GTG = V ΣTUTUΣV T = V ΣTΣV T

Note that U and V can be calculated from the eigen vectors ofGGT andGTG, respectively. Now, using

the ’SVD’, we can finally maximizeKY :

max
tr(Kx))≤P

1

2
log |KY | = max

tr(Kx)≤P

1

2
log |UΣV TKXV ΣTUT + 1|

(a)
= max

tr(Kx)≤P

1

2
log |UTUΣV TKXV ΣTUTU + UTU |

(b)
= max

tr(K̃x)≤P

1

2
log |1ΣK̃XΣT 1 + 1|

= max
tr(K̃X)≤P

1

2
log |ΣK̃XΣT + 1|

Where,

(a) follows from the property from linear algebra|A| = |UAUT | = |U ||A||UT | for square matrices.

(b) follows from the fact thatU is unitary matrix, therefore,UTU = 1. In addition, K̃x is defined by
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K̃x = V TKxV . Note that according to the ’trace’ properties tr(KX) = tr(V V TKX) = tr(V TKXV ) =

tr(K̃X)

Remark1 - Assuming K is a nonnegative definite symmetricn×n matrix and|K| denote the determinant

of K, then it follows |K| ≤ Πn
i=1|kii|

Using the fact thatX has a Noraml distribution (Xn ∼ N (0,K) ) and the remark above, we can continue

maximize 1
2 log |KY | as following:

max
tr(KX)≤P

1

2
log |ΣK̃XΣT + 1|

(a)

≤ max
tr(K̃X)≤P

min(r,t)∑

i=1

log(γ2
i P̃i + 1)

(b)
= max

tr(K̃X)≤P

min(r,t)∑

i=1

log(γ2
i (K̃X)ii + 1)

(c)
= max∑

P̃i≤P

min(r,t)∑

i=1

log(γ2
i P̃i + 1)

Where:

(a) follows from the fact thatX has Normal distributionXn ∼ N (0,K) and fromRemark1. In addition

γi = Σii.

(b) follows from P̃i = (K̃X)ii

(c) follows from P̃i = (K̃X)ii which follows thatΣP̃i ≤ P

Note that knowing theγi’s let us solve the problem using ’Water-filling’ algorithm with the given

constraints.Example - Let’s assume

G4x2 =




2 1

3 0

5 8

3 2




SinceG = UΣV T theG matrix can be written by:

G4x2 = U




K1 0

0 K2

0 0

0 0



V T

In this example, the ’SVD’ decomposition gives us tow eigenvaluesK1 andK2, which can be easily found

by ’Matlab’ (K1 = 10.3559,K2 = 2.9590). These tow eigenvalues let us findPi using ’Water-filling’

algorithm, and then the diagonal matrix̃KX . Then it’s easy to extractKX by KX = V K̃XV T .
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A. Alternative proof of capacity

There is another way to calculate the capacity by transforming the MIMO channel into a parallel channel.

The MIMO channel is given by

Y = UΣV TX + Z

Now, define

X̃ = V TX

Note thatE[X̃T X̃] = E[XTX]. In addition, let’s define

Ỹ = UTY

(a)
= UTUΣV TX + UTZ

(b)
= ΣV TX + UTZ

= ΣX̃ + Z̃

Where,

(a) Y = UΣV TX + Z.

(b) SinceU is unitary,UTU = 1.

Remark - SinceU andV are unitar matrices, multiplying inUT or V T does not add any power to channel.

Lemma 1 The MIMO channel in figure 4 has the same capacity as in figure 5

X
G
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Y

Fig. 4. MIMO Channel
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Ỹ

Fig. 5. Parallel Channel

Solution to the MIMO channel can be done by the following:
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1) Solve the parallel channel in figure 5 using the water-filling.

2) The input to the MIMO is obtain byX = V X̃.

Having this definitions let us analyze the channel from̃X to Ỹ (parallel channel), wherẽY = UTY ,

instead of analize the MIMO channel.

II. MIMO WITH FADING

Now, we assume that G is random. This assumption follows 3 cases:

1) G is not known to the transmitter and the receiver.

2) G is known only to the receiver.

3) G is known to transmitter and receiver.

Case I :

In this case, it’s not necessarily that G will get the maximumcapacity because it doesn’t depend on G’s

distribution.

C = max
tr(KX)≤P

I(X;Y )

Case II :

C = max
tr(KX))≤P

I(X;Y |G)

= max
tr(KX))≤P

(h(Y |G)− h(Y |G,X))

= max
tr(KX))≤P

ΣP (g)h(Y |G = g)− h(Z)

= max
tr(KX))≤P

ΣP (g)h(Xg + Z)

Case III :

C = max
P (x|g):tr(X))≤P

I(X;Y |G)


