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Mathematical methods in communication June 16th, 2011

Lecture 12

Lecturer: Haim Permuter Scribe: Eynan Maydan and Asaf Aharon

I. MIMO - M ULTIPLE INPUT MULTIPLE OUTPUT

MIMO is the use of multiple antennas at both the transmitteat eeviver to improve communication
performance. It is one of serveral forms of smart antennanglogy. MIMO technology has attracted
attention in wireless communication, because it offersificant increases in data throughput and link

range without additional bandwidth or transmit power.
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Fig. 1. MIMO illustration

We have seen in last lectures that for a Gaussian channelpwitier constraintl > | X? < P, and
Gaussian noiseZ, ~ N'(0, c?), the capacity is defined by
1 P
C= I(X,)Y)=-log(l+ —).
oo B p (X,Y) = Slog(1+ )
Let's check the case of parallel several channels for indeéget noise vectorg, Zs, .., Z,,.

In the parallel case, the power constraint is given Ry= " | X2, where,>>", P, < P with

17
probability one, and the capacity is defined by

C = max I(Xl,XQ,...,XK;Yl,YQ,...,YK)
f(X1,X2,...XK),E(CF, X2)<P
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Fig. 2. Parallel Gaussian channels.

After some calculations (described in lecture 8), we get tha
C= ; ilog(l + U—ZQ)
According to 'Water-filling' algorithm,P; can be found byP; = [ — 62]" = max(0, L — 02), where
P =3 P;. In MIMO systems, each output is affected by all channel iaplihe power constraint for this

model is given by% Zle Z;ZlXﬁj < P, with probability 1. The channel model can be presented as

following:
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Fig. 3. MIMO

Note: In this section we suppose théatis deterministic, therefore we can assume ifas known at
the decoder and encoder.
Mathematically,Y; « is defined byY, 1 = GrxtX¢x1 + Zrx1, WhereX;,; is the channel input(s, .. is
a constant channel gain matrix add~ N (0, K,) is the Gaussian noise. The eleméhy, representing
the gain of the channel from the transmitter anteyiria the receiver antenna

Lets assume, without loss of generality, tat A/(0,1) ( We will see later that this assumption do not
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lead to any kind of losses). Indeed, the chanriek GX + Z with a generalK, > 0 can be transformed

into the channel
Y=K, *Y=K, GX+7Z7

Where,Z = KZ‘%Z ~ N(0,1,). SinceK, is a covariance matrix, it is a symmetric matrix, kg = K. .

Therefore, we can writd(, as:

Kz = QAQT

Where, Q is unitary matrix QQ7 = 1, ) and A is the eigen values matrix which can be described as:

A0 . .0
0 X

A =
0 An

Note that sincek’, is a symmetric matrix, the transpose matrix is equal to theried matrix, i.e.

Vi 0 . . 0
0 VX
QT — Q1. Similarly, K2 = QA3QT, where, A% —
0 . .V

As we defined above: N
V=K, V=K *GX+K, 27
Now, let's calculate the covariance matrix &f— K;%Z
SoT _1 7o—1 _1 L), -t 1 L 1
K;=E[ZZ'|=FE[K.?ZZ'K,?]| =k, ?K,K.,? = k;?K2K2K,? =14,
Where,
(a) follows from K, = QAQT = QA3QTQA3QT — KZK2.
The notationl, .. is the ’identity matrix’ of dimension: x r. Accordingly, we can conclude that the noise

covariance can be assumed, without loss of generality, tihndenit matrix.

Now, let’s find the capacity of the model:

C = max I(X;Y)
> PSP

@9 ax I(X;Y)
tr(K,)<P

= tr(%j}éP h(Y) = h(Y|X)
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T ) )

(b) 1 r 1 r
< 5 logl(2Mle)’ Ky ) - 3 log|(2le)')

Where,

(a) follows from P, = E[X?2], where, X is a vector of dimension x 1.

(b) follows from h(Y) < log[(2Ile)"|Ky |], where,r is the dimension oft”, and from the fact thaZ
has Noraml distribution.

In order to find the capacity, we need to maximize the expmes§ilog |Ky| ,or actually, to maximize

Ky
Ky = E[(GX+2Z)(GX + 2)"]
= GKxGT+1

For that reason

1 1
Zlog|Ky| = Zlog|GKxGT +1
b g log Kyl = max olog|GKxGE +1]

Note: 'SVD’ (Single Value Decomposition) - We know that every squaredrisnaan be decomposed as
Anxn = QAQ™'. The SVD allows us to decompose unsquared matrixd,e., = UerrxtVf;t where

U,V are unitary matricesi{U” = 1, VV7T = 1), and X is a diagonal matrix. Therefore,
GGT =uxvtvyTuT =usstu”
GG =vtuTusv? =vefsy?®

Note that U and V can be calculated from the eigen vector€@f and G* G, respectively. Now, using

the 'SVD’, we can finally maximizesy :

1 1
Zlog | K- = “log |[USVTKxVETUT +1
wepz Byl = x5 loel x 1

1
=  max —log|UTUSVTKxVETUTU +UTU|
tr(K.)<P 2

1 ~
=  max -log|IXKxXT141]
tr(K,)<P 2

1 ~
= max - log|ZKx2T 41|
tr(Kx)<P 2

Where,
(a) follows from the property from linear algebfd| = |UAUT| = |U||A||UT| for square matrices.

(b) follows from the fact thaty is unitary matrix, therefore/7U = 1. In addition, K, is defined by
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K, = VTK,V. Note that according to the 'trace’ propertieshiy) = tr(VVTKx) = tr(VT KxV) =
tr(Kx)

Remark1 - Assuming K is a nonnegative definite symmettic n matrix and| K | denote the determinant
of K, then it follows| K| < II?" ;| k;;|

Using the fact thafX has a Noraml distribution X" ~ A/(0, K') ) and the remark above, we can continue
maximize 1 log | Ky | as following:

min(r,t)

1 - (a ~
max - log|SKxXT +1] < max log(v2P; + 1
Jmax 5 log[2Rx | < max ; g0y )

min(r,t)

, _
©  max > log(v7(Kx)ii +1)
tr(Kx)SP i=1

min(r,t

)
9 max Y log(PB+1)
ZP'L'SP i=1

Where:

(a) follows from the fact thaf has Normal distributionX™ ~ N(0, K) and fromRemark1. In addition
Vi = Yii-

(b) follows from E = (IN(X)ii

(c) follows from P, = (Kx);; which follows that>P; < P

Note that knowing they;’s let us solve the problem using 'Water-filling’ algorithmitlv the given

constraintsExample - Let's assume

Guazo =

w ot W N
N o O

Since = UXVT the G matrix can be written by:

In this example, the 'SVD’ decomposition gives us tow eigduesk’; and K, which can be easily found
by 'Matlab’ (K; = 10.3559, Ko = 2.9590). These tow eigenvalues let us firfg using 'Water-filling’
algorithm, and then the diagonal mattfi’(X. Then it's easy to extrackxy by Kx = V[N(XVT.
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A. Alternative proof of capacity

There is another way to calculate the capacity by transfogrtie MIMO channel into a parallel channel.
The MIMO channel is given by
Y =USVI'X +Z

Now, define
X=vTx

Note thatE[X7 X] = E[XT X]. In addition, let's define

Yy = UTY
= UTuxvix +urz
= SVI'X+U"Z

= XX+Z7

Where,
@Y =UsVTX + Z.
(b) SinceU is unitary, UTU = 1.

Remark - SinceU andV are unitar matrices, multiplying itr” or V" does not add any power to channel.

Lemma 1The MIMO channel in figure 4 has the same capacity as in figure 5
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Fig. 4. MIMO Channel
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Fig. 5. Parallel Channel

Solution to the MIMO channel can be done by the following:
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1) Solve the parallel channel in figure 5 using the watemfilli
2) The input to the MIMO is obtain by = VX.

Having this definitions let us analyze the channel fromto Y (parallel channel), wheré” = UTY,

instead of analize the MIMO channel.

II. MIMO WITH FADING

Now, we assume that G is random. This assumption follows 8scas

1) G is not known to the transmitter and the receiver.
2) G is known only to the receiver.

3) G is known to transmitter and receiver.

Casel :
In this case, it's not necessarily that G will get the maximcapacity because it doesn’t depend on G’s

distribution.

C= max I(X;Y)
tr(Kx)<P

Case |l :

Cc = max I(X;Y|G)
tr(Kx))<P

= e (h(T]G) - h(T|G. X))

s (9hY|G =g) - Nh(Z)

- YP(g)h(Xg+ Z
X (9 Xg+ 2)

Case lll :

C= max I(X;Y|G)
P(zlg):tr(X))<P



