Mathematical methods in communication<br>July 5th, 2009<br>\section*{Appendix: Convex functions}<br>Lecturer: Haim Permuter<br>Scribe: Koby Todros and Assaf Levanon

## I. Notation

- $\mathbb{R}$ : The set of real numbers.
- $\mathbb{R}_{+}$: The set of nonnegative real numbers.
- $\mathbb{R}_{++}$: The set of positive real numbers.
- $\mathbb{S}^{k}$ : The set of symmetric $k \times k$ matrices.
- $\mathbb{S}_{+}^{k}$ : The set of symmetric positive semi-definite $k \times k$ matrices.
- $\mathbb{S}_{++}^{k}$ : The set of symmetric positive definite $k \times k$ matrices.
- $\operatorname{dom} f$ : The domain of the function $f$. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, then $\operatorname{dom} f \triangleq\left\{x \in \mathbb{R}^{n}: f(x)\right.$ exists $\}$. For example, dom $\log =\mathbb{R}_{++}$


## II. Definitions

Definition 1 (Convex set.) A set $C \in \mathbb{R}^{n}$ is convex if the line segment between any two points in $C$ lies in $C$, i.e. $\forall x_{1}, x_{2} \in C$ and any $0 \leq \theta \leq 1$ we have $\theta x_{1}+(1-\theta) x_{2} \in C$.

Definition 2 (Convex function.) $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if $\operatorname{dom} f$ is a convex set and if $\forall x, y \in \operatorname{dom} f$ and any $0 \leq \theta \leq 1$

$$
\begin{equation*}
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y) \tag{1}
\end{equation*}
$$

Geometrically, this means that the line segment between $(x, f(x))$ and $(y, f(y))$ lies above the graph of $f$. An illustration of convex function is given in Fig. 1.

Definition 3 (Strictly convex function.) $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is strictly convex if $\operatorname{dom} f$ is a convex set and if $\forall x, y \in \operatorname{dom} f$ and any $0 \leq \theta \leq 1$

$$
\begin{equation*}
f(\theta x+(1-\theta) y)<\theta f(x)+(1-\theta) f(y) \tag{2}
\end{equation*}
$$

Definition 4 (Concave function.) $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is concave if $-f$ is convex.
Definition 5 (Strictly concave function.) $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is strictly concave if $-f$ is strictly convex.
Definition 6 (Sublevel set.) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. The $\alpha$-sublevel set of $f$ is defined as

$$
\begin{equation*}
C_{\alpha} \triangleq\{x \in \operatorname{dom} f: f(x) \leq \alpha\} \tag{3}
\end{equation*}
$$



Fig. 1. Graph of a convex function. The chord between any two points on the graph lies above the graph.

Sublevel sets of convex functions are convex (converse is false).
Definition 7 (Epigraph.) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. The epigraph of $f$ is defined as

$$
\begin{equation*}
\text { epi } f \triangleq\left\{(x, t) \in \mathbb{R}^{n+1}: x \in \operatorname{dom}, f(x) \leq t\right\} \tag{4}
\end{equation*}
$$

The function $f$ is convex iff epif is a convex set.
Definition 8 (Jensen's inequality.) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, and let $z \in \mathbb{R}^{n}$ denote a random variable, such that $\operatorname{Pr}\{z \in \operatorname{dom} f\}=1$. If $f$ is convex, then

$$
\begin{equation*}
f(\mathbb{E} z) \leq \mathbb{E} f(z) \tag{5}
\end{equation*}
$$

Proof: Convexity of $f$ implies that it is the upper envelope of the set of linear functions lying below it, i.e.,

$$
\begin{equation*}
f(z)=\sup _{L \in \mathcal{L}} L(z), \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{L} \triangleq\{L: L(z)=a z+b, \forall \infty<z<\infty\} . \tag{7}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\mathbb{E}[f(z)]=\mathbb{E}\left[\sup _{L \in \mathcal{L}} L(z)\right] \tag{8}
\end{equation*}
$$

Since $\sup _{L \in \mathcal{L}} L(z) \geq L(z)$, then by monotonicity of the expectation operator,

$$
\begin{equation*}
\mathbb{E}\left[\sup _{L \in \mathcal{L}} L(z)\right] \geq \mathbb{E}[L(z)] . \tag{9}
\end{equation*}
$$

Taking supremum on both sides of (9) w.r.t. $L(z)$ implies that

$$
\begin{equation*}
\mathbb{E}\left[\sup _{L \in \mathcal{L}} L(z)\right] \geq \sup _{L \in \mathcal{L}} \mathbb{E}[L(z)] \tag{10}
\end{equation*}
$$

Therefore, according to (8) and (10)

$$
\begin{align*}
\mathbb{E}[f(z)] & \geq \sup _{L \in \mathcal{L}} \mathbb{E}[L(z)]  \tag{11}\\
& =\sup _{L \in \mathcal{L}} L(\mathbb{E}[z])  \tag{12}\\
& =f(\mathbb{E}[z]), \tag{13}
\end{align*}
$$

where the equalities in (12) and (12) stem from the linearity of $L()$ and (6), respectively.
The basic inequality in (1) is a special case of (5), whenever $z \in\{x, y\}, \operatorname{Pr}(z=x)=\theta$ and $\operatorname{Pr}(z=y)=1-\theta$.

## III. Examples

## A. Examples on $\mathbb{R}$

- Convex functions:
- Affine: $f(x)=a x+b$ on $\mathbb{R}$, for any $a, b \in \mathbb{R}$.
- Exponential: $f(x)=\exp (a x)$ on $\mathbb{R}$, for any $a \in \mathbb{R}$.
- Powers: $f(x)=x^{\alpha}$ on $\mathbb{R}_{++}$, for $\alpha \geq 1$ or $\alpha \leq 0$.
- Powers of absolute values: $|x|^{p}$ on $\mathbb{R}$, for $p \geq 1$.
- Negative entropy: $x \log x$ on $\mathbb{R}_{++}$.
- Cocave functions
- Affine: $f(x)=a x+b$ on $\mathbb{R}$, for any $a, b \in \mathbb{R}$.
- Powers: $f(x)=x^{\alpha}$ on $\mathbb{R}_{++}$, for $0 \leq \alpha \leq 1$.
- Logarithm: $\log x$ on $\mathbb{R}_{++}$.


## B. Examples on $\mathbb{R}^{n}$ and $\mathbb{R}^{m \times n}$

Affine functions are both concave and convex. All norms are convex.

- Examples on $\mathbb{R}^{n}$
- Affine: $f(x)=a^{T} x+b$, where $a, b, x \in \mathbb{R}^{n}$.
- Norms:
* $l_{p}$ norm: $\|x\|_{p}=\left(\sum_{n=1}^{p}\left|x_{i}\right|^{p}\right)^{1 / p}$, for $p \geq 1$.
* $l_{\infty}$ norm $\|x\|_{\infty}=\max _{i}\left|x_{i}\right|$.
- Examples on $\mathbb{R}^{m \times n}$
- Affine function: $f(X)=\operatorname{tr}\left[A^{T} X\right]+b=\sum_{i=1}^{m} \sum_{i=1}^{n} A_{i, j} X_{i, j}+b$, where $\operatorname{tr}[\cdot]$ denotes the trace operator, $A, X \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}$.
- Spectral norm: $f(X)=\|X\|_{2}=\left(\lambda_{\max }\left(X^{T} X\right)\right)^{1 / 2}$, where $\lambda_{\max }(A)$ is the maximum eigenvalue of $A$, and $X \in \mathbb{R}^{m \times n}$.


## IV. VERIFYING CONVEXITY of a FUNCTION

Convexity of a function can be verified via the following manners:

- Using the definition of convex function (refer to definition 2).
- Applying some special criteria.
- Restriction of a convex function to a line.
- First order conditions.
- Second order conditions.
- Showing that the function under inspection is obtained through operations that preserve convexity.


## A. Restriction of a convex function to a line

The function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex iff the function $g: \mathbb{R} \rightarrow \mathbb{R}$,

$$
\begin{equation*}
g(t)=f(x+t v), \operatorname{dom} g=\{t \in \mathbb{R}: x+t v \in \operatorname{dom} f\} \tag{14}
\end{equation*}
$$

is convex in $t$ for any $x \in \operatorname{dom} f$ and $v \in \mathbb{R}^{n}$. Therefore, checking convexity of multivariate functions can be carried out by checking convexity of univariate functions.

Example 1 Let $f: \mathbb{S}^{n} \rightarrow \mathbb{R}$ with

$$
\begin{equation*}
f(X)=-\log \operatorname{det} X, \operatorname{dom} f=\mathbb{S}_{++}^{n} . \tag{15}
\end{equation*}
$$

Then

$$
\begin{align*}
g(t)=-\log \operatorname{det}(X+t V) & =-\log \operatorname{det} X-\log \operatorname{det}\left(I+t X^{-1 / 2} V X^{-1 / 2}\right)  \tag{16}\\
& =-\log \operatorname{det} X-\sum_{i=1}^{n} \log \left(1+t \lambda_{i}\right)
\end{align*}
$$

where $I$ is the identity matrix and $\lambda_{i}, i=1, \ldots, n$ are the eigenvalues of the matrix $X^{-1 / 2} V X^{-1 / 2}$. Since $g$ is convex in $t$ for any choice of $V$ and any $X \in \operatorname{domf}$, then $f$ is convex.

## B. First order condition

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ denote a differentiable function, i.e. $\operatorname{dom} f$ is open and $\forall x \in \operatorname{dom} f$ the gradient vector

$$
\begin{equation*}
\nabla f(x) \triangleq\left[\frac{\partial f(x)}{\partial x_{1}}, \ldots, \frac{\partial f(x)}{\partial x_{n}}\right]^{T} \tag{17}
\end{equation*}
$$

exists. Then $f$ is convex iff $\operatorname{dom} f$ is convex and $\forall x, y \in \operatorname{dom} f$

$$
\begin{equation*}
f(y) \geq f(x)+\nabla f(x)^{T}(y-x) \tag{18}
\end{equation*}
$$

The r.h.s. of (18) is the first order taylor approximation of $f(y)$ in the vicinity of $x$. According to (18), the first order taylor approximation in case where $f$ is convex, is a global underestimate of $f$. This is a very important property used in algorithm designs and performance analysis. The inequality in (18) is illustrated in Fig. 2.


Fig. 2. If $f$ is convex and differentiable, then $f(y) \geq f(x)+\nabla f(x)^{T}(y-x)$ for all $x, y \in \operatorname{dom} f$.

## C. Second order condition

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ denote a twice differentiable function, i.e. $\operatorname{dom} f$ is open and $\forall x \in \operatorname{dom} f$ the Hessian matrix, $\nabla^{2} f(x) \in \mathbb{S}^{n}$,

$$
\begin{equation*}
\nabla^{2} f(x)_{i, j} \triangleq \frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}} \tag{19}
\end{equation*}
$$

exists. Then $f$ is convex $\operatorname{iff} \operatorname{dom} f$ is convex and $\nabla^{2} f(x) \succcurlyeq 0, \forall x \in \operatorname{dom} f$.
Examples for the use of the second order condition:

- Quadratic function: Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, such that

$$
\begin{equation*}
f(x)=\frac{1}{2} x^{T} P x+q^{T} x+r, \tag{20}
\end{equation*}
$$

$q, r \in \mathbb{R}^{n}$ and $P \in \mathbb{S}^{n}$. Since

$$
\begin{equation*}
\nabla f(x)=P x+q, \tag{21}
\end{equation*}
$$

then

$$
\begin{equation*}
\nabla^{2} f(x)=P . \tag{22}
\end{equation*}
$$

Therefore, if $P \succcurlyeq 0$ then $f$ is convex.

- Least-squares objective function: Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, such that

$$
\begin{equation*}
f(x)=\|A x-b\|_{2}^{2} \tag{23}
\end{equation*}
$$

$x \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}$ and $A \in \mathbb{R}^{m \times n}$. Since

$$
\begin{equation*}
\nabla f(x)=2 A^{T}(A x-b) \tag{24}
\end{equation*}
$$

then

$$
\begin{equation*}
\nabla^{2} f(x)=2 A^{T} A \tag{25}
\end{equation*}
$$

Therefore, $f$ is convex for any $A \in \mathbb{R}^{m \times n}$.

- Quadratic-over-linear function: Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, such that

$$
\begin{equation*}
f(x, y)=\frac{x^{2}}{y} \tag{26}
\end{equation*}
$$

Then

$$
\nabla^{2} f(x, y)=\frac{2}{y^{2}}\left[\begin{array}{cc}
y & -x  \tag{27}\\
-x & \frac{x^{2}}{y}
\end{array}\right] .
$$

Therefore, $f$ is convex for any $y>0$.

## V. Operations that preserve convexity

- Positive scaling
- Sum
- Composition with affine functions
- Pointwise maximum
- Pointwise supremum
- Composition with scalar functions
- Composition with vector functions
- Minimization
- Perspective


## A. Positive scaling

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex, then $\lambda f$ is convex $\forall \lambda>0$.

## B. Sum

Let $f_{1}, f_{2}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex, then $f_{1}+f_{2}$ is convex. This property can be extended to infinite sums and integrals.

## C. Composition with affine function

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex, and let $g: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be affine, i.e. $g(x)=A x+b$, where $x \in \mathbb{R}^{m}, b \in \mathbb{R}^{n}$ and $A \in \mathbb{R}^{n \times m}$. The composition

$$
\begin{equation*}
(f \circ g)(x)=f(A x+b) \tag{28}
\end{equation*}
$$

is convex. For example, using the sum, and composition with affine function properties, along with the fact that $-\log (\cdot)$ is convex, it is concluded that

$$
\begin{equation*}
f(x)=-\sum_{i=1}^{n} \log \left(b_{i}-a_{i}^{T} x\right), \operatorname{dom} f=\left\{x: a_{i}^{T} x<b_{i}\right\}, i=1, \ldots, n \tag{29}
\end{equation*}
$$

is convex. In addition, convexity of the norm implies that then any norm of affine function is convex, i.e.

$$
\begin{equation*}
f(x)=\|A x+b\| \tag{30}
\end{equation*}
$$

is convex.

## D. Pointwise maximum

Let $f_{1}, \ldots, f_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex. Then

$$
\begin{equation*}
F(x)=\max _{i=1, \ldots, m}\left\{f_{1}(x), \ldots, f_{m}(x)\right\}, \operatorname{dom} F=\bigcap_{i=1}^{m} \operatorname{dom} f_{i}, \tag{31}
\end{equation*}
$$

is convex.
Examples:

- Piecewise-linear fucntion: $f(x)=\max _{i=1, \ldots, m}\left(a_{i}^{T} x+b_{i}\right)$ is convex.
- Sum of $r$ largest components of a vector $x \in \mathbb{R}^{n}$ :

$$
\begin{equation*}
f(x)=x_{[1]}+x_{[2]}+\ldots+x_{[r]} \tag{32}
\end{equation*}
$$

is convex, where $x_{[i]}$ is the $i$-th largest component of $x$. Proof:

$$
\begin{equation*}
f(x)=\max _{i_{1}, \ldots, i_{r} \in I_{r}}\left\{x_{i_{1}}+\ldots+x_{i_{r}}\right\} \tag{33}
\end{equation*}
$$

where $I_{r} \triangleq\left\{\left(i_{1}, \ldots, i_{r}\right): i_{1}<\ldots, i_{r}, i_{j} \in\{1, \ldots, m\}, j=1, \ldots, n\right\}$.

## E. Pointwise supremum

Let $\mathcal{A} \subseteq \mathbb{R}^{p}$ and $f: \mathbb{R}^{n} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$. Let $f(x, y)$ be convex in $x$ for each $y \in \mathcal{A}$. Then the supremum function over the set $\mathcal{A}$ is convex, i.e.

$$
\begin{equation*}
g(x)=\sup _{y \in \mathcal{A}} f(x, y) \tag{34}
\end{equation*}
$$

is convex.
Examples:

- Support function of a set $C$ :

$$
\begin{equation*}
S_{C}(x)=\sup _{y \in C} y^{T} x \tag{35}
\end{equation*}
$$

- Distance to farthest point in a set $C$ :

$$
\begin{equation*}
f(x)=\sup _{y \in C}\|x-y\| . \tag{36}
\end{equation*}
$$

- Maximum eigenvalue of symmetric matrix: for $X \in \mathbb{S}^{n}$,

$$
\begin{equation*}
\lambda_{\max }(X)=\sup _{\|y\|_{2}=1} y^{T} X y \tag{37}
\end{equation*}
$$

## F. Composition with scalar functions

Let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}, h: \mathbb{R} \rightarrow \mathbb{R}$ with $\operatorname{dom} g=\mathbb{R}^{n}$ and dom $h=\mathbb{R}$. Then

$$
\begin{equation*}
f(x)=h(g(x)) \tag{38}
\end{equation*}
$$

is convex if

1) $g$ is convex, $h$ is nondecreasing and convex. For example, $\exp (g(x))$ is convex if $g$ is convex.
2) $g$ is concave, $h$ is nonincreasing and convex. For example, $\frac{1}{g(x)}$ is convex if $g$ is concave and positive.

## G. Composition with vector functions

Let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}, h: \mathbb{R}^{p} \rightarrow \mathbb{R}$ with $\operatorname{dom} g=\mathbb{R}^{n}$ and $\operatorname{dom} h=\mathbb{R}^{p}$. Then

$$
\begin{equation*}
f(x)=h(g(x))=h\left(g_{1}(x), \ldots, g_{p}(x)\right) \tag{39}
\end{equation*}
$$

is convex if

1) Each $g_{i}$ is convex, $h$ is nondecreasing and convex in each argument. For example, $\sum_{i=1}^{m} \exp \left(g_{i}(x)\right)$ is convex if $g_{i}, i=1, \ldots, m$, are convex.
2) Each $g_{i}$ is concave, $h$ is nonincreasing and convex in each argument. For example, $-\sum_{i=1}^{m} \log g_{i}(x)$ is convex if $g_{i}, i=1, \ldots, m$, are concave and positive.

## H. Minimization

Let $C \subseteq \mathbb{R}^{n} \times \mathbb{R}^{p}$ be a nonempty convex set, $f: \mathbb{R}^{n} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$ be convex (in $\left(x, y \in \mathbb{R}^{n} \times \mathbb{R}^{p}\right)$ ). Then

$$
\begin{equation*}
g(x)=\inf _{y \in C} f(x, y) \tag{40}
\end{equation*}
$$

is convex in $x$. For example, for a nonempty convex set, $C \subset \mathbb{R}^{n}$, since $f(x, y)=\|x-y\|$ is convex in $(x, y)$ then

$$
\begin{equation*}
\inf _{y \in C}\|x-y\| \tag{41}
\end{equation*}
$$

is convex in $x$.

## I. Perspective

The perspective of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the function $g: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}$, such that

$$
\begin{equation*}
g(x, t) \triangleq t f\left(\frac{x}{t}\right), \operatorname{dom} g=\left\{(x, t): \frac{x}{t} \in \operatorname{dom} f, t>0\right\} . \tag{42}
\end{equation*}
$$

Hence, $g$ is convex in $(x, t)$ if $f$ is convex.

Example 2 Since $f(x)=x^{T} x$ is convex, then $g(x, t)=\frac{x^{T} x}{t}$ is convex in $(x, t)$.

## VI. CONVEXITY AND INFORMATION MEASURES

In this section, the properties of convex functions, shown above are used for proving convexity/convavity of information measures such as entropy and relative entropy:

## A. Concavity of entropy of discrete random variable

Let $p_{X}(x)$ denote probability mass functions of a discrete random variable $X$ with alphabet $\mathcal{X}$. Let $f\left(p_{X}(x)\right)=p_{X}(x) \log p_{X}(x)$. Since $p_{X} \geq 0$, then $\frac{d^{2} f}{d p_{X}^{2}} \geq 0$. Hence by the second-order condition for verification of convexity it is implied that $f\left(p_{X}\right)$ is convex in $p_{X}$. Now, since convexity is sum invariant, then the negative entropy, $-H(p) \triangleq \sum_{x} p_{X}(x) \log p_{X}(x)$, is convex in $p_{X}$. Thus, $H\left(p_{X}\right)$ is concave in $p_{X}$.

## B. Convexity of relative entropy

Let $p_{X}(x), q_{X}(x)$ denote probability mass functions of a random variable $X$ with alphabet $\mathcal{X}$. The negative logarithm, $f\left(p_{X}(x)\right)=-\log p_{X}(x)$ is convex. Hence, the perspective function $g\left(p_{X}(x), q_{X}(x)\right)=$ $q_{X}(x) \log \frac{q_{X}(x)}{p_{X}(x)}$ is convex in $(p, q)$. Since convexity is sum invariant, then the relative entropy $D(q \| p) \triangleq$ $\sum_{x \in \mathcal{X}} q_{X}(x) \log \frac{q_{X}(x)}{p_{X}(x)}$ is convex in $(p, q)$.

## References

[1] S. Boyd, Convex Optimization. Cambridge University Press, 2004.
[2] J.M. Steele, Stochastic Calculus and Financial Applications. Springer, 2001.

