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Appendix C : Introduction to analysis

Lecturer: Haim Permuter Scribe: Iddo Naiss & Yonatan Yebaitk

I. SETS

Definition 1 (Set)A Setis a collection of distinct elements. Those elements are adferred to as the
Members of the Set. No meaning is known to the order of elements in aréetto repetition of elements.
We notatea € A to mean thar is an element of the sed.

If every member of a Sef is also a member of a S&, A is said to beContained in B, or aSubsetof
B, which is notatedd ¢ B or A C B. If in addition there exists an Elemehf B which isn't a member

of A, A is then said to be ®roper Subsetof B, or A C B.

Example 1{3,5,8} is a Set, whose only members are 3, 5 and 8.

Note the notation used to define our set. Another popular wajefine a set is as follows:
A = {z|C}, whereC is a condition onr, means that the members df are exactly those which satisfy
C.

We denote a special kind of subsets of the real line, refameas Segments, which are simply
[a,b] & {z|a < x < b}, for any twoa < b elements of the real line. We use rounded brackets to denote
the fact that either. or b isn't a member of the Segment (e@¢ (a, b)).
We define two binary operators on Setiion and Intersection.
The Union of two setsA, B is definedA U B £ {z|x € A or x € B}.
The Intersection of two setd, B is definedAN B £ {z|z € A andz € B}.

Definition 2 (Ordered Pair)An Ordered Pair is a collection of exactly two objects, where importance is
known to the order of those objects. Hence, unlike a set.titepeis allowed in an ordered pair. More
formally, one can define an ordered pair using the concepetsf & followsx< a,b >= {{{a},0}, {{b}}}.

This definition enables us to distinct between the first ahdment of the pair.

Example 2(Using the formal definition of an Ordered PaiNotice that there is but one way to decipher
the notation{{{{3}}}, {0, {3}}. and that is as the ordered pair3, {3} >.
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Definition 3 (Relation)Given two setsA, B we defineA x B £ {< a,b > |a € A andb € B}.
A Binary Relation between the two setd, B is a subse? C A x B. We sometime notateRb to mean

<a,b>€R.

Example 3(Familiar Relations)A very familiar relation (in every known context) is tl#uation relation,
i.e. we take the notatiom = y to mean< x,y >€= (in words,z,y are equal).

Another well known relation on the real line ss.

II. FUNCTIONS AND SEQUENCES

A. Functions

Definition 4 (Function) A Function between two setsd, B, notatedF' : A — B, is a binary relation

betweenA, B which satisfies

e Va € AJb € B s.t.aFb.
o Leta e A;bl,bg € B. Thenan1 andang = by = by

This two properties justify the notatioR(a) to be that distinch € B s.t. aF'b. We shall use that notation
when dealing with functions.

A is called theDomain of F, or Dom(F'), and B is called theRangeof F, or Rng(F").

The set{b|3a € A s.t. aF'b} C B is called thelmage of F, or Im(F).

If Yai,a2 € A;b € B it holds thata; F'b and ax F'b = a; = as We say thatF' is aninjection, or that F’
is1—1.

If Rng(F) = Im(F') we say thatF’ is a surjection, or thatF is onto B.

If F'is both an injection and a surjectio, is called abijection or a1l-1 Correlation betweenA and B.

Example 4(Information Measureslet M be the set of Random Variables on a given Probability Space.
Then the Entropy Measure defined in class is a funcibn M — [0, c0), and both the Divergence and

Mutual Information are function®, I : M x M — [0, c0).

B. Sequences

Definition 5 (Sequence; Sequences a collection of ordered elements. More formally, one cafing a
Sequence as a function from the Natural Numbers to some &kdddhe Alphabet of the Sequence. We

denote the elements of a Sequencé®dg.cn.
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Definition 6 (Convergence of Sequences)sequence(a,)nen C R is said toConvergeto a € R if
Ve > 03dng € N s.t.ng < n = |a — a,| < €. a is then said to be theimit of the sequence.
The sequence is said to convergesto(or converge in the wide sence)vif) < M3ng € Nsit.ng <n =

M < a,, and we define convergence tax in the same fashion.

Example 5(A converging Real sequenc&he sequencé neN C R, whosenth element is—2—, is

n )
n+1 n+1’

. f n _ 1
easily shown to converge tb (since|l — m| = 37)-

C. Properties of Functions

Definition 7 (Bounded Functionsh function F': A — B where A, B C R is said to beBounded from
Above if 3M >0 s.t.b € Im(F) = b < M, and we similarly define when a function Bounded from

Below. If a function is said to b&8ounded we take that to mean it's bounded from both above and below.

Definition 8 (Continuous FunctionA function F: A — B where A, B C R is said to beContinuous at
a€ AifV0O<edd<dst|b—al <d=|F()— F(a)| <e.

The function is said simply to be continuous if it is contimgaat alla € A.

Also, recall the definition given in class for@onvex function of the real line.

I1l. SUBSETS OF THEREAL LINE

Definition 9 (Closed Subset @) A subsetA C R is said to beClosedif for all converging(a,)nen C A4,

its limit a is a member ofA.

Example 6All segmentsfa, b] C R are closed, and so is-oo, a], but not(—oo, a) (why?).

Definition 10 (Open Subset dR) A subsetA C R is said to beOpen if R\ A is closed.

Example 7All segments(a,b) C R are open, and so is—o0, a).

It is interesting to note that an equivalent definition of ape® set:
Lemma 1A set A C R is open if and only ifVz € A3(a,b) C A s.t.z € (a,b).

We leave the proof as an exercise to the reader.

Lemma 2Every union of open sets is still open. In addition, a finiteeisection of open sets is open as

well. 2
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As a conclusion, derived by DeMorgan’s laws from the preasgdémma, both infinite intersections and
finite unions of closed sets are still closed.
Note, however, that an infinite intersection of open setsa(oinfinite union of closed set) isn’t necessarily

open (or closed).

Example 8(Even a countable union of closed sets may not be cldSed¥ider for0 < n € N the segment

A, £ [L,1]. Notice thatl J,,.y A = (0,1], which of course isn't closed.

IV. BOUNDED SUBSETS OF THEREAL LINE

Definition 11 (upper and Lower Boundaried)et A be a subset of the real line. € R is said to be
an Upper Boundary of A if z € A = 2 < w. Similarly, [ is said to be d.ower Boundary of A if

reA=101<uzx.

Definition 12 (Supremum and Infimur@n upper boundary € R of a setA C R is called theSupremum
of Aif Ve > 03z € A st.a— e < z (i.e. all open sets containing have a non-empty intersection with
A).

A Lower boundaryb € R of A is called thelnfimum of A if Ve > 03z € A s.t.z < b+ € (i.e. all open

sets containing have a non-empty intersection with).

It is interesting to note that everyt C R which has an upper boundasye R or a lower boundary
b € R also has a supremum or an infimum, respectively. That faabriseimes referred to as thexiom
of Completenes&nd is actually equivalent to the completenesRafs a metric space. Metric spaces will

be shortly discussed at the end of this appendix.

Lemma 3(Uniqueness of Supremurbgt ¢ € R be a supremum ol C R. If b € R is also a supremum
of A, thena =b.

Proof: Supposen # b. Without loss of generality, suppose< b. Thenb € (a,b+ 1), andz €
(a,b+1) = a <z = x ¢ A (because is in particular an upper boundary df). HenceAU(a,b+1) = 0,

in contradiction. [ |

Lemma 4 (Uniqueness of Infimum)et a € R be an infimum ofA C R. If b € R is also an infimum of
A, thena = b.

The proof can be done similarly to lemma 3, and will be lefthe teader.
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Definition 13 (Maximum and Minimum)et a,b € R be the supremum/infimum of a set C R
respectively. Ifa € A thena is called theMaximum of A, and similarly if b € A thenb is called

the Minimum of A.

Lemma 5 (Existence of Maximum for closed upper bounded Real sybisetsA C R be closed, and let

b € R be an upper boundary of. Then A has a Maximum.

Proof: As mentioned aboved has a supremum € R. ThenVn € N3z, € A s.t.a — % <z, <a.
It follows that |a — x,,| < 1, hence(z, ).en converges tar (why?). Remember that is closed, and so

n’

a € A, ie.ais the maximum ofA. [ |

In much the same way, every closed and bounded from belowesob® has a minimum.

Theorem 1(The set of upper bounds of a real subset is cloged)A C R.

DenoteU £ {z € R|z is an upper boundary od}, and supposé& # (). ThenU is closed.

Proof: Let (u,)nen € U, and supposéu,,),en converges ta: € R.
Suppose that there exisisc A s.t.u < a. Then3dng e Nsit.ng < n = |u—u,| < (a —u) = u, < a,

in contradiction. Hence: is an upper boundary ofl. ThusU is closed. ]

Again, the set of lower boundaries of a subset of the realiraso closed.

Lemma6Let A C R be bounded from above, and defitieto be the set of all upper boundaries 4f
ThenU has a minimum.
Similarly, if A is bounded from below, defink to be the set of all lower boundaries df ThenL has a

maximum.

Proof: This is a direct conclusion from Theorem 1, and the fact (Whiceasy enough to confirm)

that U is bounded from below and bounded from above. [ |

Note that almost trivially, in the settings of Lemma 6, th@mmum of A is the minimum ofU, and

the infimum of A is the maximum ofL.
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Example 9(Capacity)Remember the operational definition of the Capacity of a nhhn

C = sup{R|R is achievabl¢. We can now prove that the capacity is well defined, i.e. thatdet of
achievable rates is bounded from above (hence it has a suprgm

Notice that for a finite AlphabetX| < oo andlog,(2|X|) < R at least half of the messages <
{1, ...,2"%} can't be coded, hence the probability of an error can't caywéo zero (whether we’re using
the mean criteria or the maximum criteria), renderfdginachievable.

Where the channel’'s Alphabdt is infinite, the set of achievable rates may very well be umiglea from

above, and we take its supremum (hence, the Capacity of éenel) to bexc.

Example 10(Capacity, alternative definitiolYow we can also note that the other definition of the Capacity
of a DMC rightfully uses maximum of the Mutual Informatiortiar than a supremum. Recall that given
the transition probabilitiesr(z|y) the Mutual Information/(X;Y") is concave and continuous in the
source distributiorpx (i.e. as a functiorny : {(pi),'f:(‘l € RLXH Zlﬂ p; =1} — [0, 00]). We saw in class
that it is concave, and the fact that it's continuous will githaut proof for the moment (to proove this,
consider the representation of the Mutual Information asia ®f Entropies, each a sum of elemntry

functions of Px). This follows from the next theorem.

Theorem 2(Weierstrass’s Extreme Value t.)A continuous function from a closed and bounded subset

of R™ to the real line has a maximum and a minimum.

Note that we didn't really defined what it means for a subsék®fto be bounded. More on that later.

Example 11(Rate Distortion definition)n much the same way, we note that in the Mutual Information
definition of the Rate Distortion function, we indeed have mimum over the transition probabilities,
rather than an infimum. That is a result of the fact that thedutnformation is also continuous as a
function of the transition probabilities (and convex invithere the source distribution is given), and the

last theorem.

V. BASIC NOTIONS IN METRIC SPACES
Definition 14 (Metric) A Metric (also referred to as ®istance Function) on a non-empty sefl is a
functiond : A x A — [0, co] which satisfies:
« Positive-Definited(a,b) =0 < a=1>
o Symmetric:Va,b € A d(a,b) = d(b,a)
« Triangle Inequalityva,b,c € A d(a,c) < d(a,b) + d(b,c)

The pair< A, d > is then called aMetric Space
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Example 12(Metrics onR™) Perhaps the best known example of a metric is the distaneeebattwo
real numbers, namely the metric defined®rby d(z,y) £ |z — y|.

This metric is naturally generalized ®" in a number of ways. We define for dll< p € N

dp(X%,Y) = /Dy |z — yilP-

The actual proof that these functions are indeed distanuetifins will be left to the reader. For those who

are interested, it requires the use of two inequalities kmaw/Holder inequality and Minkowski inequality.
4

Example 13(Metrics on RVsDefine on{0,1}" the metricd(x,y) = Y7, (v S vi) = >y |70 — yil-
This is in fact a reduction ofl; from the last example to the subsfi, 1} C R, but in this case it is
trivially a metric. This metric is known as the Hamming Metrand is familiar to us from our discussion
of Rate Distortion functions.
Another metric we discussed in class is the Mean Square Eretric on the set of Random Variables on a
specific Probability Space, definelX,Y) £ \/E((X — Y)2). This function is trivially positive-definite
and symmetric. We can easily prove the triangle inequalgingy Cauchy-Schwarz inequality (stating
E(XY) < VE(X?E(Y?2)):

E(X - 2)?) = E((X-Y)+(Y -2)

= E(X-Y))+2E(X -Y)Y -2)+E(Y - 2)%

< E((X -Y)") +2VE((X - Y))E((Y - 2)?) +E((Y - 2)*)

= (VE(X -Y))+ VE(Y - 2)2)?

Example 14(Information Metrics)Divergence isn’'t a metric. As seen in one of the given homé&wiblis
not symmetric.

Nevertheless, one can define a metric on the set of Randorablésion a given Probability Space (where
we identify any two RVsX, Y if there exist4, B ¢ R and an injectionf : A '=' B s.t. X = f(Y) with

probability 1) using the Conditional Entropy measure in thiéowing two ways:

d(X,Y) 2 H(X|Y)+ H(Y|X) )
ax,y) e I& |?(; = §Y|X ) @

In these cases, once more, it is trivially proven that thesetfons are positive-definite and symmetric,

while proving the triangle inequality takes some effort.
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For the purpose of the next three definition, 4etd, d > be a metric space.

Definition 15 (Bounded subset#) subsetB C A is said to be bounded #D = sup{d(b1, b2)|b1, b2 € B}.
D is then called théiameter of B.

Definition 16 (Cauchy Sequencé) Cauchy Sequences a sequencéu,),cny C A which satisfies

Y0 < edng € Ns.t.ng <n,m = d(an,am) < €

It is easily seen that every converging sequence is a Cauebyedice.

Definition 17 (Complete Metric Space} A, d > is said to beCompleteif every Cauchy Sequence oh

is converging.

Example 15(Completeness @&, Q) As mentioned before, the Real Line is complete. It is alsoarithat

the set of Rational Numbers isn’'t complete.

To finish this appendix, let us remark that it can be provem #agh Metric Space is a subspace of a
Complete Metric Space, and that the Real Line is the Comguietf the Rational Numbers (this is actually

one of the formal ways to construg).

NOTES

1Unknown author, "Topology/Metric Spaces”, Wikibookd,t p: // en. wi ki books. or g/ wi Ki / Topol ogy/ Metri c_Spaces

2See article no. 1

3James R. Munkres, "Topology; A First Course”, Prentice Hzdllege Div, pp. 163-166 172-174 ,1974-06.

4Unknown author, "Holder’s inequality”, Wikipedi&ttp: /7 en. w ki pedi a. org/ w Ki / Hol der” s i nequal i ty
Unknown author, "Minkowski inequality”, Wikipediaht t p://en. w ki pedi a. or g/ w ki / M nkowski 1 nequal ity
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