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I. SETS

Definition 1 (Set)A Set is a collection of distinct elements. Those elements are also referred to as the

Members of the Set. No meaning is known to the order of elements in a Set, nor to repetition of elements.

We notatea ∈ A to mean thana is an element of the setA.

If every member of a SetA is also a member of a SetB, A is said to beContained in B, or aSubsetof

B, which is notatedA ⊂ B or A ⊆ B. If in addition there exists an Elementb of B which isn’t a member

of A, A is then said to be aProper Subsetof B, or A ( B.

Example 1{3, 5, 8} is a Set, whose only members are 3, 5 and 8.

Note the notation used to define our set. Another popular way to define a set is as follows:

A = {x|C}, whereC is a condition onx, means that the members ofA are exactly those which satisfy

C.

We denote a special kind of subsets of the real line, referredto as Segments, which are simply

[a, b] , {x|a ≤ x ≤ b}, for any twoa < b elements of the real line. We use rounded brackets to denote

the fact that eithera or b isn’t a member of the Segment (e.g.a /∈ (a, b]).

We define two binary operators on Sets,Union and Intersection.

The Union of two setsA, B is definedA ∪ B , {x|x ∈ A or x ∈ B}.

The Intersection of two setsA, B is definedA ∩ B , {x|x ∈ A andx ∈ B}.

Definition 2 (Ordered Pair)An Ordered Pair is a collection of exactly two objects, where importance is

known to the order of those objects. Hence, unlike a set, repetition is allowed in an ordered pair. More

formally, one can define an ordered pair using the concept of Sets as follows:< a, b >, {{{a}, ∅}, {{b}}}.

This definition enables us to distinct between the first an last element of the pair.

Example 2 (Using the formal definition of an Ordered Pair)Notice that there is but one way to decipher

the notation{{{{3}}}, {∅, {3}}, and that is as the ordered pair< 3, {3} >.
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Definition 3 (Relation)Given two setsA, B we defineA × B , {< a, b > |a ∈ A andb ∈ B}.

A Binary Relation between the two setsA, B is a subsetR ⊂ A×B. We sometime notateaRb to mean

< a, b >∈ R.

Example 3 (Familiar Relations)A very familiar relation (in every known context) is theEquation relation,

i.e. we take the notationx = y to mean< x, y >∈= (in words,x, y are equal).

Another well known relation on the real line is≤.

II. FUNCTIONS AND SEQUENCES

A. Functions

Definition 4 (Function) A Function between two setsA, B, notatedF : A → B, is a binary relation

betweenA, B which satisfies

• ∀a ∈ A∃b ∈ B s.t. aFb.

• Let a ∈ A; b1, b2 ∈ B. ThenaFb1 andaFb2 ⇒ b1 = b2

This two properties justify the notationF (a) to be that distinctb ∈ B s.t. aFb. We shall use that notation

when dealing with functions.

A is called theDomain of F, or Dom(F ), andB is called theRangeof F, or Rng(F ).

The set{b|∃a ∈ A s.t. aFb} ⊂ B is called theImage of F, or Im(F ).

If ∀a1, a2 ∈ A; b ∈ B it holds thata1Fb anda2Fb ⇒ a1 = a2 we say thatF is an injection, or thatF

is 1 − 1.

If Rng(F ) = Im(F ) we say thatF is a surjection, or thatF is ontoB.

If F is both an injection and a surjection,F is called abijection or a 1-1 Correlation betweenA andB.

Example 4 (Information Measures)Let M be the set of Random Variables on a given Probability Space.

Then the Entropy Measure defined in class is a functionH : M → [0,∞), and both the Divergence and

Mutual Information are functionsD, I : M × M → [0,∞).

B. Sequences

Definition 5 (Sequence)A Sequenceis a collection of ordered elements. More formally, one can define a

Sequence as a function from the Natural Numbers to some Set, called the Alphabet of the Sequence. We

denote the elements of a Sequence as(an)n∈N.
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Definition 6 (Convergence of Sequences)A sequence(an)n∈N ⊆ R is said toConverge to a ∈ R if

∀ǫ > 0∃n0 ∈ N s.t. n0 < n ⇒ |a − an| < ǫ. a is then said to be theLimit of the sequence.

The sequence is said to converge to∞ (or converge in the wide sence) if∀0 < M∃n0 ∈ N s.t.n0 < n ⇒

M < an, and we define convergence to−∞ in the same fashion.

Example 5 (A converging Real sequence)The sequence( n
n+1

)n∈N ⊂ R, whosenth element is n
n+1

, is

easily shown to converge to1 (since|1 − n
n+1

| = 1

n+1
).

C. Properties of Functions

Definition 7 (Bounded Functions)A function F : A → B whereA, B ⊂ R is said to beBounded from

Above if ∃M > 0 s.t. b ∈ Im(F ) ⇒ b < M , and we similarly define when a function isBounded from

Below. If a function is said to beBounded, we take that to mean it’s bounded from both above and below.

Definition 8 (Continuous Function)A function F : A → B whereA, B ⊂ R is said to beContinuous at

a ∈ A if ∀0 < ǫ∃0 < δ s.t. |b − a| < δ ⇒ |F (b) − F (a)| < ǫ.

The function is said simply to be continuous if it is continuous at alla ∈ A.

Also, recall the definition given in class for aConvex function of the real line.

III. SUBSETS OF THEREAL LINE

Definition 9 (Closed Subset ofR) A subsetA ⊆ R is said to beClosedif for all converging(an)n∈N ⊆ A,

its limit a is a member ofA.

Example 6All segments[a, b] ⊆ R are closed, and so is(−∞, a], but not(−∞, a) (why?).

Definition 10 (Open Subset ofR) A subsetA ⊆ R is said to beOpen if R\A is closed.

Example 7All segments(a, b) ⊆ R are open, and so is(−∞, a).

It is interesting to note that an equivalent definition of an Open set:

Lemma 1 A set A ⊂ R is open if and only if∀x ∈ A∃(a, b) ⊆ A s.t. x ∈ (a, b).

We leave the proof as an exercise to the reader.1

Lemma 2 Every union of open sets is still open. In addition, a finite intersection of open sets is open as

well. 2
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As a conclusion, derived by DeMorgan’s laws from the preceding lemma, both infinite intersections and

finite unions of closed sets are still closed.

Note, however, that an infinite intersection of open sets (oran infinite union of closed set) isn’t necessarily

open (or closed).

Example 8 (Even a countable union of closed sets may not be closed)Consider for0 < n ∈ N the segment

An , [ 1

n
, 1]. Notice that

⋃

n∈N
An = (0, 1], which of course isn’t closed.

IV. B OUNDED SUBSETS OF THEREAL L INE

Definition 11 (upper and Lower Boundaries)Let A be a subset of the real line.u ∈ R is said to be

an Upper Boundary of A if x ∈ A ⇒ x ≤ u. Similarly, l is said to be aLower Boundary of A if

x ∈ A ⇒ l ≤ x.

Definition 12 (Supremum and Infimum)An upper boundarya ∈ R of a setA ⊆ R is called theSupremum

of A if ∀ǫ > 0∃x ∈ A s.t. a − ǫ < x (i.e. all open sets containinga have a non-empty intersection with

A).

A Lower boundaryb ∈ R of A is called theInfimum of A if ∀ǫ > 0∃x ∈ A s.t. x < b + ǫ (i.e. all open

sets containingb have a non-empty intersection withA).

It is interesting to note that everyA ⊆ R which has an upper boundarya ∈ R or a lower boundary

b ∈ R also has a supremum or an infimum, respectively. That fact is sometimes referred to as theAxiom

of Completeness, and is actually equivalent to the completeness ofR as a metric space. Metric spaces will

be shortly discussed at the end of this appendix.

Lemma 3 (Uniqueness of Supremum)Let a ∈ R be a supremum ofA ⊆ R. If b ∈ R is also a supremum

of A, thena = b.

Proof: Supposea 6= b. Without loss of generality, supposea < b. Then b ∈ (a, b + 1), andx ∈

(a, b+1) ⇒ a < x ⇒ x /∈ A (becausea is in particular an upper boundary ofA). HenceA∪(a, b+1) = ∅,

in contradiction.

Lemma 4 (Uniqueness of Infimum)Let a ∈ R be an infimum ofA ⊆ R. If b ∈ R is also an infimum of

A, thena = b.

The proof can be done similarly to lemma 3, and will be left to the reader.
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Definition 13 (Maximum and Minimum)Let a, b ∈ R be the supremum/infimum of a setA ⊆ R

respectively. Ifa ∈ A then a is called theMaximum of A, and similarly if b ∈ A then b is called

the Minimum of A.

Lemma 5 (Existence of Maximum for closed upper bounded Real subsets) Let A ⊆ R be closed, and let

b ∈ R be an upper boundary ofA. ThenA has a Maximum.

Proof: As mentioned above,A has a supremuma ∈ R. Then∀n ∈ N∃xn ∈ A s.t. a− 1

n
< xn ≤ a.

It follows that |a − xn| < 1

n
, hence(xn)n∈N converges toa (why?). Remember thatA is closed, and so

a ∈ A, i.e. a is the maximum ofA.

In much the same way, every closed and bounded from below subset of R has a minimum.

Theorem 1(The set of upper bounds of a real subset is closed)Let A ⊆ R.

DenoteU , {x ∈ R|x is an upper boundary ofA}, and supposeU 6= ∅. ThenU is closed.

Proof: Let (un)n∈N ⊆ U , and suppose(un)n∈N converges tou ∈ R.

Suppose that there existsa ∈ A s.t. u < a. Then∃n0 ∈ N s.t. n0 < n ⇒ |u − un| < (a − u) ⇒ un < a,

in contradiction. Henceu is an upper boundary ofA. ThusU is closed.

Again, the set of lower boundaries of a subset of the real lineis also closed.

Lemma 6 Let A ⊆ R be bounded from above, and defineU to be the set of all upper boundaries ofA.

ThenU has a minimum.

Similarly, if A is bounded from below, defineL to be the set of all lower boundaries ofA. ThenL has a

maximum.

Proof: This is a direct conclusion from Theorem 1, and the fact (which is easy enough to confirm)

that U is bounded from below andL bounded from above.

Note that almost trivially, in the settings of Lemma 6, the supremum ofA is the minimum ofU , and

the infimum ofA is the maximum ofL.
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Example 9 (Capacity)Remember the operational definition of the Capacity of a channel

C = sup{R|R is achievable}. We can now prove that the capacity is well defined, i.e. that the set of

achievable rates is bounded from above (hence it has a supremum).

Notice that for a finite Alphabet|X | < ∞ and log2(2|X |) < R at least half of the messagesm ∈

{1, ..., 2nR} can’t be coded, hence the probability of an error can’t converge to zero (whether we’re using

the mean criteria or the maximum criteria), renderingR unachievable.

Where the channel’s AlphabetX is infinite, the set of achievable rates may very well be unbounded from

above, and we take its supremum (hence, the Capacity of the channel) to be∞.

Example 10(Capacity, alternative definition)Now we can also note that the other definition of the Capacity

of a DMC rightfully uses maximum of the Mutual Information rather than a supremum. Recall that given

the transition probabilitiesPr(x|y) the Mutual InformationI(X ; Y ) is concave and continuous in the

source distributionpX (i.e. as a functionI : {(pi)
|X |
i=1

∈ R
|X |
+ |

∑|X |
i=1

pi = 1} → [0,∞]). We saw in class

that it is concave, and the fact that it’s continuous will go without proof for the moment (to proove this,

consider the representation of the Mutual Information as a sum of Entropies, each a sum of elemntry

functions ofPX ). This follows from the next theorem.

Theorem 2(Weierstrass’s Extreme Value th.)3 A continuous function from a closed and bounded subset

of Rn to the real line has a maximum and a minimum.

Note that we didn’t really defined what it means for a subset ofRn to be bounded. More on that later.

Example 11(Rate Distortion definition)In much the same way, we note that in the Mutual Information

definition of the Rate Distortion function, we indeed have a minimum over the transition probabilities,

rather than an infimum. That is a result of the fact that the Mutual Information is also continuous as a

function of the transition probabilities (and convex in it,where the source distribution is given), and the

last theorem.

V. BASIC NOTIONS IN METRIC SPACES

Definition 14 (Metric) A Metric (also referred to as aDistance Function) on a non-empty setA is a

function d : A × A → [0,∞] which satisfies:

• Positive-Definite:d(a, b) = 0 ⇔ a = b

• Symmetric:∀a, b ∈ A d(a, b) = d(b, a)

• Triangle Inequality:∀a, b, c ∈ A d(a, c) ≤ d(a, b) + d(b, c)

The pair< A, d > is then called aMetric Space
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Example 12(Metrics onRn) Perhaps the best known example of a metric is the distance between two

real numbers, namely the metric defined onR by d(x, y) , |x − y|.

This metric is naturally generalized toRn in a number of ways. We define for all0 < p ∈ N

dp(x, y) , p

√

∑n

i=1
|xi − yi|p.

The actual proof that these functions are indeed distance functions will be left to the reader. For those who

are interested, it requires the use of two inequalities known as Holder inequality and Minkowski inequality.

4

Example 13(Metrics on RVs)Define on{0, 1}n the metricd(x, y) ,
∑n

i=1
(xi ⊕ yi) =

∑n

i=1
|xi − yi|.

This is in fact a reduction ofd1 from the last example to the subset{0, 1} ⊂ R, but in this case it is

trivially a metric. This metric is known as the Hamming Metric, and is familiar to us from our discussion

of Rate Distortion functions.

Another metric we discussed in class is the Mean Square Errormetric on the set of Random Variables on a

specific Probability Space, definedd(X, Y ) ,
√

E((X − Y )2). This function is trivially positive-definite

and symmetric. We can easily prove the triangle inequality using Cauchy-Schwarz inequality (stating

E(XY ) ≤
√

E(X2)E(Y 2)):

E((X − Z)2) = E(((X − Y ) + (Y − Z))2)

= E((X − Y )2) + 2E((X − Y )(Y − Z)) + E((Y − Z)2)

≤ E((X − Y )2) + 2
√

E((X − Y )2)E((Y − Z)2) + E((Y − Z)2)

= (
√

E((X − Y )2) +
√

E((Y − Z)2))2

Example 14(Information Metrics)Divergence isn’t a metric. As seen in one of the given homework, it is

not symmetric.

Nevertheless, one can define a metric on the set of Random Variables on a given Probability Space (where

we identify any two RVsX, Y if there existA, B ⊂ R and an injectionf : A
1−1
→ B s.t. X = f(Y ) with

probability 1) using the Conditional Entropy measure in thefollowing two ways:

d(X, Y ) , H(X |Y ) + H(Y |X) (1)

d(X, Y ) ,
H(X |Y ) + H(Y |X)

H(X, Y )
(2)

In these cases, once more, it is trivially proven that these functions are positive-definite and symmetric,

while proving the triangle inequality takes some effort.
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For the purpose of the next three definition, let< A, d > be a metric space.

Definition 15 (Bounded subsets)A subsetB ⊂ A is said to be bounded if∃D = sup{d(b1, b2)|b1, b2 ∈ B}.

D is then called theDiameter of B.

Definition 16 (Cauchy Sequence)A Cauchy Sequenceis a sequence(an)n∈N ⊂ A which satisfies

∀0 < ǫ∃n0 ∈ N s.t. n0 ≤ n, m ⇒ d(an, am) < ǫ

It is easily seen that every converging sequence is a Cauchy Sequence.

Definition 17 (Complete Metric Space)< A, d > is said to beComplete if every Cauchy Sequence onA

is converging.

Example 15(Completeness ofR, Q) As mentioned before, the Real Line is complete. It is also trivial that

the set of Rational Numbers isn’t complete.

To finish this appendix, let us remark that it can be proven that each Metric Space is a subspace of a

Complete Metric Space, and that the Real Line is the Completion of the Rational Numbers (this is actually

one of the formal ways to constructR).

NOTES

1Unknown author, ”Topology/Metric Spaces”, Wikibooks,http://en.wikibooks.org/wiki/Topology/Metric_Spaces

2See article no. 1
3James R. Munkres, ”Topology; A First Course”, Prentice HallCollege Div, pp. 163-166 172-174 ,1974-06.
4Unknown author, ”Holder’s inequality”, Wikipedia,http://en.wikipedia.org/wiki/Holder’s_inequality

Unknown author, ”Minkowski inequality”, Wikipedia,http://en.wikipedia.org/wiki/Minkowski_inequality
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