I. Notation

A. General

- X - random variable
- \mathcal{X} - alphabet
- $|\mathcal{X}|$ - cardinality of the alphabet. Unless it is said otherwise, we assume that the alphabet is finite, i.e., $|\mathcal{X}| < \infty$.
- x - an observation or a specific value. Clearly, $x \in \mathcal{X}$.
- $P_X(x)$ - the probability that the random variable X gets the value x, i.e., $P_X(x) = \Pr\{X = x\}$.
- P_X - denotes the whole vector of probabilities. One may also use the notation $P_X(\cdot)$.
- $P(x)$ - this is a short notation for $P_X(x)$.
- x^n - is the vector $(x_1, x_2, ..., x_n)$ for $n \geq 1$. If $n = 0$ then the vector is empty.
- $x_{j:i}$ - is the vector $(x_i, x_{i+1}, ..., x_j)$, for $j > i$. If $j = i$, then the vector has only one element x_i and if $j < i$, the vector is empty.
- \perp - statistically independent symbol.
- $\mathbb{E}[X]$ - expectation, i.e.,

$$\mathbb{E}[X] \triangleq \sum_{x \in \mathcal{X}} x P(x).$$

(1)

Similarly $\mathbb{E}[g(X)]$ is

$$\mathbb{E}[g(X)] \triangleq \sum_{x \in \mathcal{X}} g(x) P(x)$$

(2)

B. Information measures

- $H(X)$ - entropy, i.e.,

$$H(X) \triangleq \mathbb{E}[- \log_2 P_X(X)] = - \sum_{x \in \mathcal{X}} P_X(x) \log_2 P_X(x).$$

- $H(X, Y)$ - joint entropy, i.e.,

$$H(X, Y) \triangleq \mathbb{E}[- \log P(X, Y)] = - \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} P(x, y) \log P(x, y)$$
• $H(X|Y)$ - conditional entropy, i.e.,

$$H(X|Y) \triangleq \mathbb{E}[- \log P(X|Y)] = - \sum_{x \in X} \sum_{y \in Y} P(x, y) \log P(x|y).$$

• $I(X;Y)$ - mutual information, i.e.,

$$I(X;Y) \triangleq \sum_{x,y} P(x,y) \frac{P(x,y)}{P(x)P(y)}.$$ (3)

• $D(P||Q)$ - relative entropy or Kullback-Leibler divergence, i.e.,

$$D(P||Q) \triangleq \sum_x P(x) \log \frac{P(x)}{Q(x)} = - \mathbb{E}_P \log \frac{Q(x)}{P(x)}.$$ (4)

C. Convexity

• $f(x)$ Convex Function - if

$$f(\lambda x_1 + \bar{\lambda} x_2) \leq \lambda f(x_1) + \bar{\lambda} f(x_2)$$ (5)

for all x_1, x_2 in its domain $\forall \lambda \in [0, 1]$, where $\bar{\lambda} = 1 - \lambda$. A function is strictly convex if

$$f(\lambda x_1 + \bar{\lambda} x_2) < \lambda f(x_1) + \bar{\lambda} f(x_2).$$ (6)

• $f(x)$ Concave Function - if $-f(x)$ is (strictly) convex.

D. Source Coding

• $C(x)$ or C_x - denotes the codeword corresponding to x.

• D - set of finite length string of symbols from a D-ary alphabet.

• $l(x)$ - length of $C(x)$ associated with value $x \in \mathcal{X}$.

• $L = \mathbb{E}[l(x)]$ - expected length of the $C(x)$.

• R - rate transmitted through a channel.

E. Channel Capacity and Gaussian Channel

• C - information channel capacity.

$$C \triangleq \max_{P_X} I(X;Y)$$ (7)

• Gaussian Channel - discrete channel whit output Y_i at time i, where Y_i is the sum of the input X_i and the noise Z_i. The noise Z_i is drawn i.i.d from a Gaussian distribution with variance σ_z^2. Thus,

$$Y_i = X_i + Z_i, \quad Z_i \sim \mathcal{N}(0, \sigma_z^2)$$ (8)

Where the noise Z_i is assumed to be independent of the signal X_i.

• P - average power constraint, limitation on the input is an energy or power constraint. For any codeword $X^n = (x_1, x_2, ..., x_n)$ transmitted over the channel, we require that

$$\frac{1}{n} \sum_{i=1}^{n} x_i^2 \leq P$$ (9)
F. Differential Entropy

- \(h(x) \) - differential entropy.
 \[
 h(X) \triangleq - \int f_X(x) \log_2(f_X(x)) \, dx \triangleq \mathbb{E}[- \log_2 f_X] \tag{10}
 \]

- \(h(X|Y) \) - conditional entropy.
 \[
 h(X|Y) \triangleq - \int f_{X,Y}(x,y) \log_2 f_{X|Y}(x|y) \, dx \, dy = \mathbb{E}[- \log_2 f_{X|Y}(X|Y)] \tag{11}
 \]

- \(I(X;Y) \) - mutual information.
 \[
 I(X;Y) \triangleq D[f_{X,Y}||f_X f_Y] = h(X) - h(X|Y) \tag{12}
 \]

- \(D(f_X \| g_X) \) - divergence.
 \[
 D(f_X \| g_X) \triangleq \int_{x \in S} f_X(x) \log_2 \frac{f_X(x)}{g_X(x)} \, dx \tag{13}
 \]