
Homework Set #4
Differential Entropy, Gaussian Channel, Lagrange multipliers (KKT conditions)

1. Differential entropy.
Evaluate the differential entropy h(X) = −

∫

f ln f for the following:

(a) Find the entropy of the exponential density λe−λx, x ≥ 0.

(b) The sum of X1 and X2, where X1 and X2 are independent normal random
variables with means µi and variances σ2

i , i = 1, 2.

2. Mutual information for correlated normals.
Find the mutual information I(X;Y ), where

(

X

Y

)

∼ N2

(

0,

[

σ2 ρσ2

ρσ2 σ2

])

.

Evaluate I(X;Y ) for ρ = 1, ρ = 0, and ρ = −1, and comment on your results.

3. Markov Gaussian mutual information.
Suppose that (X, Y, Z) are jointly Gaussian and that X → Y → Z forms a
Markov chain. Let X and Y have correlation coefficient ρ1 and let Y and Z

have correlation coefficient ρ2. Find I(X;Z).

4. Output power constraint.
Consider an additive white Gaussian noise channel with an expected output
power constraint P . (We might want to protect the eardrums of the listener.)
Thus Y = X+Z, Z ∼ N(0, σ2), Z is independent of X, and EY 2 ≤ P . Assume
σ2 < P . Find the channel capacity.

5. Multipath Gaussian channel.
Consider a Gaussian noise channel of power constraint P , where the signal
takes two different paths and the received noisy signals are added together at
the antenna.
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Let Y = Y1 + Y2 and EX2 ≤ P .

(a) Find the capacity of this channel if Z1 and Z2 are jointly normal with
covariance matrix

K =

[

N Nρ

Nρ N

]

.

(b) What is the capacity for ρ = 0,−1, and 1 ?

6. The two-look Gaussian channel.

✲ ✲X (Y1, Y2)

Consider the ordinary additive noise Gaussian channel with two correlated
looks at X, i.e., Y = (Y1, Y2), where

Y1 = X + Z1

Y2 = X + Z2

with a power constraint P on X, and (Z1, Z2) ∼ N2(0, K), where

K =

[

N Nρ

Nρ N

]

.

Find the capacity C for

(a) ρ = 1.
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(b) ρ = 0.

(c) ρ = -1.

Note that the capacity of the above channel in all cases is the same as the
capacity of the channel X → Y1 + Y2.

7. Diversity System

For the following system, a message W ∈ {1, 2, . . . , 2nR} is encoded into two
symbol blocks Xn

1 = (X1,1, X1,2, ..., X1,n) and Xn
2 = (X2,1, X2,2, ..., X2,n) that

are being transmitted over a channel. The average power constrain on the
inputs are 1

n
E[

∑n

i=1 X
2
1,i] ≤ P1 and 1

n
E[

∑n

i=1 X
2
2,i] ≤ P2. The channel has a

multiplying effect on X1, X2 by factor h1, h2, respectively, i.e., Y = h1X1 +
h2X2 + Z, where Z is a white Gaussian noise Z ∼ N(0, σ2).

(a) Find the joint distribution ofX1 andX2 that bring the mutual information
I(Y ;X1, X2) to a maximum? (You need to find argmaxPX1,X2

I(X1, X2;Y ).)

X1

X2

Encoder Decoder

h1

h2

W

Z

Ŵ
Y

V1

V2

Figure 1: The communication model

(b) What is the capacity of the system ?

(c) Express the capacity for the following cases:

i. h1 = 1, h2 = 1?

ii. h1 = 1, h2 = 0?

iii. h1 = 0, h2 = 0?

8. AWGN with two noises
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Figure 2 depicts a communication system with an AWGN (Additive white noise
Gaussian) channel whith two i.i.d. noises Z1 ∼ N(0, σ2

1), Z2 ∼ N(0, σ2
2) that are

independent of each other and are added to the signal X, i.e., Y = X+Z1+Z2.
The average power constrain on the input is P , i.e., 1

n
E[

∑n

i=1 X
2
i ] ≤ P . In the

sub-questions below we consider the cases where the noise Z2 may or may not
be known to the encoder and decoder.

X Y

Z1

Z2

Encoder DecoderW Ŵ

1 2

Figure 2: Two noise sources

(a) Find the channel capacity for the case in which the noise in not known
to either sides (lines 1 and 2 are disconnected from the encoder and the
decoder).

(b) Find the capacity for the case that the noise Z2 is known to the encoder
and decoder (lines 1 and 2 are connected to both the encoder and decoder).
This means that the codeword Xn may depend on the message W and
the noise Zn

2 and the decoder decision Ŵ may depend on the output Y n

and the noise Zn
2 . (Hint: Could the capacity be lager than 1

2
log(1+ P

σ2

1

)?)

(c) Find the capacity for the case that the noise Z2 is known only to the
decoder. (line 1 is disconnected from the encoder and line 2 is connected
to the decoder). This means that the codewords Xn may depend only on
the message W and the decoder decision Ŵ may depend on the output
Y n and the noise Zn

2 .

9. Parallel channels and waterfilling
Consider a pair of parallel Gaussian channels, i.e.,

(

Y1

Y2

)

=

(

X1

X2

)

+

(

Z1

Z2

)

,

where
(

Z1

Z2

)

∼ N

(

0,

[

σ2
1 0
0 σ2

2

])

,
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and there is a power constraint E(X2
1 + X2

2 ) ≤ P . Assume that σ2
1 > σ2

2. At
what power does the channel stop behaving like a single channel with noise
variance σ2

2, and begin behaving like a pair of channels, ie., at what power does
the worst channel become useful?

10. Blahut-Arimoto’s algorithm and KKT conditions (Lagrange multi-
plier) Recall, that the capacity of a memoryless channel is given by

C = max
p(x)

I(X;Y ).

Solving this optimization problem is a difficult task for the general channel. In
this question we develop an iterative algorithm for finding the solution for a
fixed channel p(y|x).

(a) Prove that the mutual information as a function of p(x) and p(x|y) may
be written as

I(X;Y ) =
∑

x,y

p(x)p(y|x) log
p(x|y)

p(x)
.

(b) Show that I(X;Y ) as written above is concave in both p(x), p(x|y) (Hint.
You may use the log-sum-inequality).

(c) Find an expression for p(x) that maximizes I(X;Y ) when p(x|y) is fixed
(Hint. You may use the Lagrange multipliers method with the constraint
∑

x p(x) = 1. No need to take into account that p(x) ≥ 0 since it will
obtained anyway.)

(d) Find an expression for p(x|y) that maximizes I(X;Y ) when p(x) is fixed
(Hint. You may use the Lagrange multipliers method with constraints
∑

x p(x|y) = 1 for all y. No need to take into account that p(x|y) ≥ 0
since it will obtained anyway.).

(e) Using (d), conclude that C = maxp(x),p(x|y) I(X;Y ).

The Blahut-Arimoto’s algorithm is performed by maximizing in each iteration
over another variable; first over p(x) when p(x|y) is fixed, then over p(x|y)
when p(x) is fixed, and so on. This iterative algorithm converges, and hence
one can find the capacity of any DMC p(y|x) with reasonable alphabet size.

11. Fading channel.
Consider an additive noise fading channel

V Z
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❄ ❄

X −→
⊙

−→✍✌
✎☞
∑

−→ Y

Y = XV + Z,

where Z is additive noise, V is a random variable representing fading, and Z

and V are independent of each other and of X.

(a) Argue that knowledge of the fading factor V improves capacity by showing

I(X;Y |V ) ≥ I(X;Y ).

(b) Incidentally, conditioning does not always increase mutual information.
Give an example of p(u, r, s) such that I(U ;R|S) < I(U ;R).

12. Additive Gaussian channel where the noise might be a relay

In this question we consider a channel with additive Gaussian noise as seen in
class.

Consider the channel presented in Fig. 3.

X

Z N

Y

Figure 3: Additive Gaussian noise channel.

Y = X + Z +N,

where Z ∼ N (0, σ2
1) and N ∼ N (0, σ2

2) are additive noises and the input, X,
is with power constraint P . N,Z and X are independent.
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(a) Calculate the capacity of the channel assuming that the noise is indepen-
dent of the message that the encoder uses for determining Xi.

(b) Now it is given that Zi is an output of a relay-encoder which has access
to the same message M that the channel encoder has. Hence X and Z

are no longer independent. It is also given that Z has a power constraint
P , namely 1

n

∑n

i=1 Zi ≤ P with high probability. Find the capacity of
the channel and the probability density function f(x, z) for which it is
achieved.

13. True or False
Copy the following to your notebook and write true or false. Then, if it’s
true, prove it. Otherwise, if it’s false, give a counter example or prove that the
opposite is true.

• Let X be a continuous random variable. Then the following holds

I(X;X) = h(X).

14. Two antennas with Gaussian noise
In this question we consider a point-to-point discrete memoryless channel (DMC)
in which the transmitter and the receiver both have two antennas, illustrated in
Fig. 4. This channel is defined by two input alphabets X1 and X2, two output
alphabets Y1 and Y2 and a channel transition matrix PY1Y2|X1X2

. A message M
is randomly and uniformly chosen from the message set M = {1, 2, . . . , 2nR}
and is to be transmitted from the encoder to the decoder in a lossless manner
(as defined in class).

M
Encoder

Xn
1

Xn
2

PY1Y2|X1X2

Y n
1

Y n
2

Decoder
M̂

Figure 4: Two antenna point-to-point DMC.

(a) What is the capacity of the channel?

Now, consider the following Gaussian two antenna point-to-point DMC illus-
trated in Fig. 5
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X1,i

X2,i

Z1

Z2

Y1,i

Y2,i

Figure 5: A Gaussian two antenna point-to-point DMC.

The outputs of the channel for every time i ∈ {1, . . . , n} are give by,

Y1,i = X1,i + Z1, (1)

Y2,i = X1,i +X2,i + Z1 + Z2, (2)

where (Z1, Z2) are two independent (of each other and of everything else)
Gaussian random variable distributed according to Z1 ∼ N (0, N1) and Z1 ∼
N (0, N2). The input signals are bound to an average power constraints,

E

[

1

n

n
∑

i=1

X2
1,i

]

≤ P1 ; E

[

1

n

n
∑

i=1

X2
2,i

]

≤ P2. (3)

(b) Find the capacity of the Gaussian channel in terms of the provided pa-
rameters and state the joint distribution of (X1, X2) that achieves it.

15. Complex Gaussian Channel. The following question focuses on the complex
Gaussian point-to-point communication channel.

Let Z = U + iV be a complex Gaussian RV in the sense that U and V are
independent and identically distributed real Gaussian RVs. In the following
sections Z ∼ CN (0, γ), where,

0 = E[Z] ; γ = E[|Z|2], (4)

and γ is a given positive parameter.

(a) Find the distribution of the random vector (ℜ{Z},ℑ{Z})T = (U, V )T .
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(b) Is it true that h(Z) = h(U, V )? Justify your answer.

(c) Calculate h(Z).

(d) What is the maximum of the differential entropy over all centered complex
RVs Z = U+iV with E[U2]+E[V 2] ≤ γ? Which distribution of Z achieves
this maximum?

Finally, consider the complex Gaussian channel illustrated in Fig. 6.

Xi

Zi ∼ CN (0, N)

Yi

Figure 6: A complex Gaussian point-to-point channel.

The output of the channel for every time i ∈ {1, . . . , n} is give by,

Yi = Xi + Zi, (5)

where Xi, for i ∈ {1, . . . , n}, is a complex channel input and Zi is distributed
i.i.d according to Zi ∼ CN (0, N). The input signal is bound to an average
power constraint,

E

[

1

n

n
∑

i=1

|Xi|
2

]

≤ P. (6)

The capacity of the complex Gaussian channel is given by,

C = max
fX : E[|X|2]≤P

I(X;Y ). (7)

(e) Express the capacity in (7) in terms of the parameters of the problem
(i.e., as a function of P and N) and state the distribution of the complex
input RV X that achieves the maximum.
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(f) Compare the result to the capacity of the real point-to-point channel.
Explain the difference.

16. Fast fading Gaussian channel:

Consider a Gaussian channel given by Yi = GiXi + Zi, where Zi
i.i.d
∼ N (0, N)

M XiEnc

Gi Zi

Dec
Yi M̂

Figure 7: Fast fading Gaussian channel

and Gi
i.i.d
∼ PG(g).

The gains and noise are independent, i.e., {Zi} ⊥⊥ {Gi}, and

PG(g) =

{

0.5 if g = 1

0.5 if g = 2

(a) Assume that the states are known at the decoder only, and there is an
input constraint P .

i. What is the capacity formula?

ii. Find the optimal inputs distribution in the formula you gave.

iii. Compute the capacity as a function of N and P .

(b) Now the states are known both to the encoder and decoder, and the input
constraint is P .

i. What is the capacity formula?

ii. Compute the capacity as a function of N and P .
You can write your answer as an optimization problem.

(c) Assume

PG(g) =

{

0.5 if g = 0

0.5 if g = 1
.

Repeat 16b.
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