Homework Set #3 Rates definitions, Channel Coding, Source-Channel coding

1. Rates

- (a) **Channels coding Rate:** Assuming you are sending 1024 different messages using 20 usages of a channel. What is the rate (in bits per channel use) that you send.
- (b) **Source coding Rate:** Assuming you have a file with 10^6 Ascii characters, where the alphabet of Ascii characters is 256. Assume that each Ascii character is represented by bits (binary alphabet before compression). After compressing it we get $4 * 10^6$ bits. What is the compression rate?

2. Preprocessing the output.

One is given a communication channel with transition probabilities $p(y \mid x)$ and channel capacity $C = \max_{p(x)} I(X; Y)$. A helpful statistician preprocesses the output by forming $\tilde{Y} = g(Y)$, yielding a channel $p(\tilde{y}|x)$. He claims that this will strictly improve the capacity.

- (a) Show that he is wrong.
- (b) Under what conditions does he not strictly decrease the capacity?

3. The Z channel.

The Z-channel has binary input and output alphabets and transition probabilities p(y|x) given by the following matrix:

$$Q = \begin{bmatrix} 1 & 0\\ 1/2 & 1/2 \end{bmatrix} \qquad x, y \in \{0, 1\}$$

Find the capacity of the Z-channel and the maximizing input probability distribution.

4. Using two channels at once.

Consider two discrete memoryless channels $(\mathcal{X}_1, p(y_1 | x_1), \mathcal{Y}_1)$ and $(\mathcal{X}_2, p(y_2 | x_2), \mathcal{Y}_2)$ with capacities C_1 and C_2 respectively. A new channel $(\mathcal{X}_1 \times \mathcal{X}_2, p(y_1 | x_1) \times p(y_2 | x_2), \mathcal{Y}_1 \times \mathcal{Y}_2)$ is formed in which $x_1 \in \mathcal{X}_1$ and $x_2 \in \mathcal{X}_2$, are *simultaneously* sent, resulting in y_1, y_2 . Find the capacity of this channel.

5. A channel with two independent looks at Y.

Let Y_1 and Y_2 be conditionally independent and conditionally identically distributed given X. Thus $p(y_1, y_2|x) = p(y_1|x)p(y_2|x)$.

- (a) Show $I(X; Y_1, Y_2) = 2I(X; Y_1) I(Y_1; Y_2)$.
- (b) Conclude that the capacity of the channel

$$X \longrightarrow (Y_1, Y_2)$$

is less than twice the capacity of the channel

6. Choice of channels.

Find the capacity C of the union of 2 channels $(\mathcal{X}_1, p_1(y_1|x_1), \mathcal{Y}_1)$ and $(\mathcal{X}_2, p_2(y_2|x_2), \mathcal{Y}_2)$ where, at each time, one can send a symbol over channel 1 or over channel 2 but not both. Assume the output alphabets are distinct and do not intersect.

(a) Show
$$2^C = 2^{C_1} + 2^{C_2}$$
.

- (b) What is the capacity of this Channel?
- 7. Cascaded BSCs.

Consider the two discrete memoryless channels $(\mathcal{X}, p_1(y|x), \mathcal{Y})$ and $(\mathcal{Y}, p_2(z|y), \mathcal{Z})$.

Let $p_1(y|x)$ and $p_2(z|y)$ be binary symmetric channels with crossover probabilities λ_1 and λ_2 respectively.

- (a) What is the capacity C_1 of $p_1(y|x)$?
- (b) What is the capacity C_2 of $p_2(z|y)$?
- (c) We now cascade these channels. Thus $p_3(z|x) = \sum_y p_1(y|x)p_2(z|y)$. What is the capacity C_3 of $p_3(z|x)$? Show $C_3 \leq \min\{C_1, C_2\}$.
- (d) Now let us actively intervene between channels 1 and 2, rather than passively transmitting y^n . What is the capacity of channel 1 followed by channel 2 if you are allowed to decode the output y^n of channel 1 and then reencode it as \tilde{y}^n for transmission over channel 2? (Think $W \longrightarrow x^n(W) \longrightarrow y^n \longrightarrow \tilde{y}^n(y^n) \longrightarrow z^n \longrightarrow \hat{W}$.)
- (e) What is the capacity of the cascade in part c) if the receiver can view both Y and Z?

8. Channel capacity

- (a) What is the capacity of the following channel in Fig. 1 (appears on the next page).
- (b) Provide a simple scheme that can transmit at rate $R = \log_2 3$ bits through this channel.

Figure 1: A channel

9. A channel with a switch. Consider the channel that is depicted in Fig.2, there are two channels with the conditional probabilities $p(y_1|x)$ and $p(y_2|x)$. These two channels have common input alphabet \mathcal{X} and two **disjoint** output alphabets $\mathcal{Y}_1, \mathcal{Y}_2$ (a symbol that appears in \mathcal{Y}_1 can't appear in \mathcal{Y}_2). The position of the switch is determined by R.V Z which is independent of X, where $\Pr(Z = 1) = \lambda$.

Figure 2: The channel.

(a) Show that

$$I(X;Y) = \lambda I(X;Y_1) + \lambda I(X;Y_2).$$
(1)

(b) The capacity of this system is given by $C = \max_{p(x)} I(X;Y)$. Show that

$$C \le \lambda C_1 + \lambda C_2, \tag{2}$$

where $C_i = \max_{p(x)} I(X; Y_i)$. When is equality achieved?

(c) The sub-channels defined by $p(y_1|x)$ and $p(y_2|x)$ are now given in Fig.9, where $p = \frac{1}{2}$. Find the input probability p(x) that maximizes I(X;Y). For this case, does the equality stand in Eq. (2)? explain!

Figure 3: (a) describes channel 1 - BSC with transition probability p. (b) describes channel 2 - Z channel with transition probability p.

10. Channel with state

A discrete memoryless (DM) state dependent channel with state space S is defined by an input alphabet \mathcal{X} , an output alphabet \mathcal{Y} and a set of channel transition matrices $\{p(y|x,s)\}_{s\in\mathcal{S}}$. Namely, for each $s \in S$ the transmitter sees a different channel. The capacity of such a channel where the state is know causally to both encoder and decoder is given by:

$$C = \max_{p(x|s)} I(X; Y|S).$$
(3)

Let $|\mathcal{S}| = 3$ and the three different channels (one for each state $s \in \mathcal{S}$) are as illustrated in Fig.4

The state process is i.i.d. according to the distribution p(s).

- (a) Find an expression for the capacity of the S-channel (the channel the transmitter sees given S = 1) as a function of ϵ .
- (b) Find an expression for the capacity of the BSC (the channel the transmitter sees given S = 2) as a function of δ .

Figure 4: The three state dependent channel.

- (c) Find an expression for the capacity of the Z-channel (the channel the transmitter sees given S = 3) as a function of ϵ .
- (d) Find an expression for the capacity of the DM state dependent channel (using formula (3)) for $p(s) = \begin{bmatrix} \frac{1}{2} & \frac{1}{3} & \frac{1}{6} \end{bmatrix}$ as a function of ϵ and δ .
- (e) Let us define a conditional probability matrix $P_{X|S}$ for two random variables X and S with $|\mathcal{X}| = \{0, 1\}$ and $|\mathcal{S}| = \{1, 2, 3\}$, by:

$$\left[P_{X|S}\right]_{i=1,j=1}^{3,2} = p(x=j-1|s=i).$$
(4)

What is the input conditional probability matrix $P_{X|S}$ that achieves the capacity you have found in (d)?

11. Modulo Channel

- (a) Consider the DMC defined as follows: Output $Y = X \oplus_2 Z$ where X, taking values in $\{0, 1\}$, is the channel input, \oplus_2 is the modulo-2 summation operation, and Z is binary channel noise uniform over $\{0, 1\}$ and independent of X. What is the capacity of this channel?
- (b) Consider the channel of the previous part, but suppose that instead of modulo-2 addition $Y = X \oplus_2 Z$, we perform modulo-3 addition $Y = X \oplus_3 Z$. Now what is the capacity?

- 12. Cascaded BSCs: Given is a cascade of k identical and independent binary symmetric channels, each with crossover probability α .
 - (a) In the case where no encoding or decoding is allowed at the intermediate terminals, what is the capacity of this cascaded channel as a function of k, α .
 - (b) Now, assume that encoding and decoding is allowed at the intermediate points, what is the capacity as a function of k, α .
 - (c) What is the capacity of each of the above settings in the case where the number of cascaded channels, k, goes to infinity?