Homework Set #1
Properties of Entropy, Mutual Information and Divergence

1. Entropy of functions of a random variable.
 Let X be a discrete random variable. Show that the entropy of a function of X is less than or equal to the entropy of X by justifying the following steps:
 \[H(X, g(X)) \overset{(a)}{=} H(X) + H(g(X)|X) \]
 \[\overset{(b)}{=} H(X). \]
 \[H(X, g(X)) \overset{(c)}{=} H(g(X)) + H(X|g(X)) \]
 \[\overset{(d)}{\geq} H(g(X)). \]
 Thus $H(g(X)) \leq H(X)$.

2. Example of joint entropy.
 Let $p(x, y)$ be given by
 \[
 \begin{array}{c|cc}
 Y & 0 & 1 \\
 \hline
 X & 0 & \frac{1}{3} & \frac{1}{3} \\
 & 1 & 0 & \frac{1}{3}
 \end{array}
 \]
 Find
 (a) $H(X), H(Y)$.
 (b) $H(X|Y), H(Y|X)$.
 (c) $H(X,Y)$.
 (d) $H(Y) - H(Y|X)$.
 (e) $I(X;Y)$.

 The entropy, $H_a(X) = -\sum p(x) \log_a p(x)$ is expressed in bits if the logarithm is to the base 2 and in bytes if the logarithm is to the base 256. What is the relationship of $H_2(X)$ to $H_{256}(X)$?
4. Two looks.
Here is a statement about pairwise independence and joint independence. Let $X, Y_1,$ and Y_2 be binary random variables. If $I(X; Y_1) = 0$ and $I(X; Y_2) = 0$, does it follow that $I(X; Y_1, Y_2) = 0$?

(a) Yes or no?
(b) Prove or provide a counterexample.

(c) If $I(X; Y_1) = 0$ and $I(X; Y_2) = 0$ in the above problem, does it follow that $I(Y_1; Y_2) = 0$? In other words, if Y_1 is independent of X, and if Y_2 is independent of X, is it true that Y_1 and Y_2 are independent?

5. A measure of correlation.
Let X_1 and X_2 be identically distributed, but not necessarily independent. Let

$$\rho = 1 - \frac{H(X_2|X_1)}{H(X_1)}.$$

(a) Show $\rho = \frac{I(X_1; X_2)}{H(X_1)}$. (There is no typo in the definition of ρ)

(b) Show $0 \leq \rho \leq 1$.

(c) When is $\rho = 0$?

(d) When is $\rho = 1$?

6. The value of a question.
Let $X \sim p(x), \quad x = 1, 2, \ldots, m$.
We are given a set $S \subseteq \{1, 2, \ldots, m\}$. We ask whether $X \in S$ and receive the answer

$$Y = \begin{cases} 1, & \text{if } X \in S \\ 0, & \text{if } X \not\in S. \end{cases}$$

Suppose $\Pr\{X \in S\} = \alpha$.

(a) Find the decrease in uncertainty $H(X) - H(X|Y)$.

(b) Is the set S with a given probability α is as good as any other $S' \neq S$ with $\Pr\{X \in S'\} = \alpha$?
7. **Relative entropy is not symmetric**

Let the random variable X have three possible outcomes \{a, b, c\}. Consider two distributions on this random variable

<table>
<thead>
<tr>
<th>Symbol</th>
<th>$p(x)$</th>
<th>$q(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1/2</td>
<td>1/3</td>
</tr>
<tr>
<td>b</td>
<td>1/4</td>
<td>1/3</td>
</tr>
<tr>
<td>c</td>
<td>1/4</td>
<td>1/3</td>
</tr>
</tbody>
</table>

Calculate $H(p), H(q), D(p \parallel q)$ and $D(q \parallel p)$.

Verify that in this case $D(p \parallel q) \neq D(q \parallel p)$.

8. **“True or False” questions**

Copy each relation and write **true** or **false**. Then, if it’s true, prove it. If it is false give a counterexample or prove that the opposite is true.

(a) $H(X) \geq H(X|Y)$

(b) $H(X) + H(Y) \leq H(X,Y)$

(c) Let X, Y be two independent random variables. Then

$$H(X - Y) \geq H(X).$$

(d) Let X, Y, Z be three random variables that satisfies $H(X, Y) = H(X) + H(Y)$ and $H(Y, Z) = H(Z) + H(Y)$. Then the following holds

$$H(X, Y, Z) = H(X) + H(Y) + H(Z).$$

(e) For any X, Y, Z and the deterministic function f, g $I(X; Y|Z) = I(X, f(X, Y); Y, g(Y, Z)|Z)$.

9. **Joint Entropy** Consider n different discrete random variables, named $X_1, X_2, ..., X_n$. Each random variable separately has an entropy $H(X_i)$, for $1 \leq i \leq n$.

(a) What is the upper bound on the joint entropy $H(X_1, X_2, ..., X_n)$ of all these random variables $X_1, X_2, ..., X_n$ given that $H(X_i)$, for $1 \leq i \leq n$ are fixed?

(b) Under what conditions will this upper bound be reached?
(c) What is the lower bound on the joint entropy \(H(X_1, X_2, \ldots, X_n) \) of all these random variables?

(d) Under what condition will this upper bound be reached?

10. **More question of True or False**

Let \(X, Y, Z \) be discrete random variables. Copy each relation and write true or false. If it’s true, prove it. If it is false give a counterexample or prove that the opposite is true.

For instance:

- \(H(X) \geq H(X|Y) \) is true. Proof: In the class we showed that \(I(X; Y) > 0 \), hence \(H(X) - H(X|Y) > 0 \).
- \(H(X) + H(Y) \leq H(X, Y) \) is false. Actually the opposite is true, i.e., \(H(X) + H(Y) \geq H(X, Y) \) since \(I(X; Y) = H(X) + H(Y) - H(X, Y) \geq 0 \).

(a) If \(H(X|Y) = H(X) \) then \(X \) and \(Y \) are independent.

(b) For any two probability mass functions (pmf) \(P, Q \),

\[
D \left(\frac{P + Q}{2} \right) \leq \frac{1}{2} D(P||Q),
\]

where \(D(||) \) is a divergence between two pmfs.

(c) Let \(X \) and \(Y \) be two independent random variables. Then

\[
H(X + Y) \geq H(X).
\]

(d) \(I(X; Y) - I(X; Y|Z) \leq H(Z) \)

(e) If \(f(x, y) \) is a convex function in the pair \((x, y) \), then for a fixed \(y \), \(f(x, y) \) is convex in \(x \), and for a fixed \(x \), \(f(x, y) \) is convex in \(y \).

(f) If for a fixed \(y \) the function \(f(x, y) \) is a convex function in \(x \), and for a fixed \(x \), \(f(x, y) \) is convex function in \(y \), then \(f(x, y) \) is convex in the pair \((x, y) \). (Examples of such functions are \(f(x, y) = f_1(x) + f_2(y) \) or \(f(x, y) = f_1(x)f_2(y) \) where \(f_1(x) \) and \(f_2(y) \) are convex.)
(g) Let X, Y, Z, W satisfy the Markov chain $X - Y - Z$ and $Y - Z - W$. Does the Markov $X - Y - Z - W$ hold? (The Markov $X - Y - Z - W$ means that $P(x|y, z, w) = P(x|y)$ and $P(x, y|z, w) = P(x, y|z)$.)

(h) $H(X|Z)$ is concave in $P_{X|Z}$ for fixed P_Z.

One wishes to identify a random object $X \sim p(x)$. A question $Q \sim r(q)$ is asked at random according to $r(q)$. This results in a deterministic answer $A = A(x, q) \in \{a_1, a_2, \ldots\}$. Suppose the object X and the question Q are independent. Then $I(X; Q, A)$ is the uncertainty in X removed by the question-answer (Q, A).

(a) Show $I(X; Q, A) = H(A|Q)$. Interpret.

(b) Now suppose that two i.i.d. questions $Q_1, Q_2 \sim r(q)$ are asked, eliciting answers A_1 and A_2. Show that two questions are less valuable than twice the value of a single question in the sense that $I(X; Q_1, A_1, Q_2, A_2) \leq 2I(X; Q_1, A_1)$.

12. Entropy bounds.

Let $X \sim p(x)$, where x takes values in an alphabet \mathcal{X} of size m. The entropy $H(X)$ is given by

$$H(X) \equiv -\sum_{x \in \mathcal{X}} p(x) \log p(x) = E_p \log \frac{1}{p(X)}.$$

Use Jensen’s inequality ($E f(X) \leq f(EX)$, if f is concave) to show

(a) $H(X) \leq \log E_p \frac{1}{p(X)} = \log m$.

(b) $-H(X) \leq \log(\sum_{x \in \mathcal{X}} p^2(x))$, thus establishing a lower bound on $H(X)$.

(c) Evaluate the upper and lower bounds on $H(X)$ when $p(x)$ is uniform.

(d) Let X_1, X_2 be two independent drawings of X. Find $\Pr\{X_1 = X_2\}$ and show $\Pr\{X_1 = X_2\} \geq 2^{-H}$.

Suppose a (non-stationary) Markov chain starts in one of n states, necks
down to $k < n$ states, and then fans back to $m > k$ states. Thus $X_1 \rightarrow X_2 \rightarrow X_3$, $X_1 \in \{1, 2, \ldots, n\}$, $X_2 \in \{1, 2, \ldots, k\}$, $X_3 \in \{1, 2, \ldots, m\}$, and $p(x_1, x_2, x_3) = p(x_1)p(x_2|x_1)p(x_3|x_2)$.

(a) Show that the dependence of X_1 and X_3 is limited by the bottleneck by proving that $I(X_1; X_3) \leq \log k$.

(b) Evaluate $I(X_1; X_3)$ for $k = 1$, and conclude that no dependence can survive such a bottleneck.

14. Convexity of Halfspaces, hyperplanes and polyhedrons

Let x be a real vector of finite dimension n, i.e., $x \in \mathbb{R}^n$. A halfspace is the set of all $x \in \mathbb{R}^n$ that satisfies $a^T x \leq b$, where $a \neq 0$. In other words a halfspace is the set

$$\{x \in \mathbb{R}^n : a^T x \leq b\}.$$

A hyperplan is the set of the form

$$\{x \in \mathbb{R}^n : a^T x = b\}.$$

(a) Show that a halfspace and a hyperplan are convex sets.

(b) Show that for any two sets A and B that are convex the intersection $A \cap B$ is also convex.

(c) A polyhedron is an intersection of halfspaces and a hyperplanes. Deduce that a polyhedron is a convex set.

(d) A probability vector x is such that each element is positive and it sums to 1. Is the set of all vector probabilities of dimension n (called the probability simplex) a halfspace, hyperplan or polyhedron?

15. Some sets of probability distributions.

Let X be a real-valued random variable with $\Pr(X = a_i) = p_i$, $i = 1, \ldots, n$, where $a_1 < a_2 < \ldots < a_n$. Let p denote the vector p_1, p_2, \ldots, p_n. Of course $p \in \mathbb{R}^n$ lies in the standard probability simplex. Which of the following conditions are convex in p? (That is, for which of the following conditions is the set of $p \in P$ that satisfy the condition convex?)

6
(a) $\alpha \leq E[f(X)] \leq \beta$, where $E[f(X)]$ is the expected value of $f(X)$, i.e. $E[f(x)] = \sum_{i=1}^{n} p_i f(a_i)$ (The function $f : \mathbb{R} \mapsto \mathbb{R}$ is given.)

(b) $\Pr(X > \alpha) \leq \beta$

(c) $E[|X^2|] \leq \alpha E[|X|]$.

(d) $\text{var}(X) \leq \alpha$, where $\text{var}(X) = E(X - EX)^2$ is the variance of X.

(e) $E[X^2] \leq \alpha$

(f) $E[X^2] \geq \alpha$

16. **Perspective transformation preserve convexity** Let $f(x), f : \mathbb{R} \rightarrow \mathbb{R}$, be a convex function.

(a) Show that the function

$$tf\left(\frac{x}{t}\right),$$

is a convex function in the pair (x, t) for $t > 0$. (The function $tf\left(\frac{x}{t}\right)$ is called perspective transformation of $f(x)$.)

(b) Is the preservation true for concave functions too?

(c) Use this property to prove that $D(P||Q)$ is a convex function in (P, Q).

17. **Coin Tosses**

Consider the next joint distribution: X is the number of coin tosses until the first head appears and Y is the number of coin tosses until the second head appears. The probability for a head is q, and the tosses are independent.

a. Compute the distribution of X, $p(x)$, the distribution of Y, $p(y)$, and the conditional distributions $p(y|x)$ and $p(x|y)$.

b. Compute $H(X)$, $H(Y|X)$, $H(X,Y)$. Each term should not include a series. Hint: Is $H(Y|X) = H(Y - X|X)$?

c. Compute $H(Y)$, $H(X|Y)$, and $I(X;Y)$. If necessary, answers may include a series.

18. **Inequalities** Copy each relation to your notebook and write \leq, \geq or $=$, prove it.

(a) Let X be a discrete random variable. Compare $\frac{1}{2^{n(X)}}$ vs. $\max_x p(x)$.

7
(b) Let $H_b(a)$ denote the binary entropy for $a \in [0, 1]$ and H_{ter} is the ternary entropy i.e. $H_{\text{ter}}(a, b, c) = -a \log a - b \log b - c \log c$, where $p_1, p_2, p_3 \in [0, 1]$, and $p_1 + p_2 + p_3 = 1$. Compare $H_{\text{ter}}(ab, a\bar{b}, \bar{a})$ vs $H_b(a) + \bar{a}H_b(b)$.

19. **True or False of a constrained inequality:**

Given are three discrete random variables X, Y, Z that satisfy $H(Y|X, Z) = 0$.

(a) Copy the next relation to your notebook and write **true** or **false**.

$$I(X; Y) \geq H(Y) - H(Z)$$

(b) What are the conditions for which the equality $I(X; Y) = H(Y) - H(Z)$ holds.

(c) Assume that the conditions for $I(X; Y) = H(Y) - H(Z)$ are satisfied. Is it true that there exists a function such that $Z = g(Y)$?

20. **True or False of:** Copy each relation to your notebook and write **true** or **false**. If true, prove the statement, and if not provide a counterexample.

(a) Let $X - Y - Z - W$ be a Markov chain, then the following holds:

$$I(X; W) \leq I(Y; Z).$$

(b) For two probability distributions, p_{XY} and q_{XY}, that are defined on $\mathcal{X} \times \mathcal{Y}$, the following holds:

$$D(p_{XY}||q_{XY}) \geq D(p_X||q_X).$$

(c) If X and Y are dependent and also Y and Z are dependent, then X and Z are dependent.

21. **Cross entropy:**

Often in Machine learning, cross entropy is used to measure performance of a classifier model such as neural network. Cross entropy is defined for two PMFs P_X and Q_X as

$$H(P_X, Q_X) \triangleq - \sum_{x \in \mathcal{X}} P_X(x) \log Q_X(x).$$
In a shorter notation we write as

\[H(P, Q) \triangleq -\sum_{x \in \mathcal{X}} P(x) \log Q(x). \]

Copy each of the following relations to your notebook and write **true** or **false** and provide a proof/disproof.

(a) \(0 \leq H(P, Q) \leq \log |\mathcal{X}| \) for all \(P, Q \).
(b) \(\min_Q H(P, Q) = H(P, P) \) for all \(P \).
(c) \(H(P, Q) \) is concave in the pair \((P, Q) \).
(d) \(H(P, Q) \) is convex in the pair \((P, Q) \).