Final Exam

1) True or False (30 points)

Copy each relation to your notebook and write true or false. Then, if it's true, prove it. If it is false give a counterexample or prove that the opposite is true.
a) Let X, Y be two random variables. Then $H(X-Y) \leq H(X \mid Y)$. [4 points]

Solution: False.

$$
\begin{aligned}
H(X-Y) & \geq H(X-Y \mid Y) \\
& =H(X \mid Y) .
\end{aligned}
$$

b) For any finite alphabet random variables $H(X, Y, Z)-H(X, Y) \geq H(X, Z)-H(X)$. [4 points]

Solution: False.

$$
\begin{aligned}
H(X, Y, Z)-H(X, Y) & =H(Z \mid X, Y) \\
& \leq H(Z \mid X) \\
& =H(X, Z)-H(Z)
\end{aligned}
$$

c) Which of the following sequence of code-lengths are a valid binary huffman codes(can be more than one answer)? [4 points]

- $1,2,3,3 \mathrm{~V}$
- 1,2,2,3 X
- 1,3,3,3 X
- 2,2,2,2 V
d) Let $\left\{X_{i}\right\}_{i \geq 1}$ be an i.i.d. source distributed according to P_{X}. In addition, let $\left\{Y_{i}\right\}_{i \geq 1}$ and $\left\{Z_{i}\right\}_{i \geq 1}$ be two i.i.d. side information sequences that may be available at the encoder and decoder of a lossless source coding setting. If $I(X ; Y)>I(X ; Z)$, then the minimum rate that is needed to compress $\left\{X_{i}\right\}_{i \geq 1}$ losslessly with side information $\left\{Y_{i}\right\}_{i \geq 1}$ is smaller than the minimum rate that is needed to compress $\left\{X_{i}\right\}_{i \geq 1}$ losslessly with with side information $\left\{Z_{i}\right\}_{i \geq 1}$. Assume the side information is known both to the encoder and decoder. [4 points]

Solution: True. $I(X ; Y)>I(X ; Z)$, hence $H(X \mid Z)>H(X \mid Y)$ and the minimum rate that is needed to compress $\left\{X_{i}\right\}_{i \geq 1}$ losslessly is with side information $\left\{Y_{i}\right\}_{i \geq 1}$.
e) Let X be a continues alphabet random variable. For which of the following channels with power constraint $\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}(m) \leq P$, the capacity is not finite (there can be more than one answer): [10 points]
i) $Y=X \mathrm{~V}$
ii) $Y=X+Z$, where $Z \sim N(0,1) \mathrm{X}$
iii) $Y=X+Z$, where $Z \sim N(0,1)$ with probability 0.9 , and $Z=0$ with probability 0.1 . V Provide a scheme that achieves the infinite capacity, if exists.

Solution: Since X has continues alphabet, (a) and (c) - which has no noise - has infinite capacity. The scheme is for (c), but also apply for (a):

- Take the interval $[0, \sqrt{P}]$ and divide it into $2^{n R}$ points- $j \frac{\sqrt{P}}{2^{n R}}, j=1,2, \ldots, 2^{n R}$.
- For every message j, send $x_{i}(m)=j \frac{\sqrt{P}}{2^{n R}}$ for all $i=1,2, \ldots, n$.
- The decoder declares the message at the first time that $y=j \frac{\sqrt{P}}{2^{n R}}$ for some j.

An error accurse if $Z \neq 0$ for all i. Hence, $P(e r)=0.9^{n}$, which goes to zero with increasing n.
f) Assume a memoryless channel given by $p(y \mid x)$, and the capacity is given by $C=$ $\max _{p(x)} I(X ; Y)$. The capacity can be strictly increased by forming the output to be $Y_{1}=f(Y)$. [4 points]

Solution: False. Since $H(X \mid Y)=H(X \mid Y, f(Y)) \geq H(X \mid f(Y))$. It can also be explained by the the fact that $X-Y-g(Y)$ is a Markov chain.
2) Joint Entropy (15 points) Consider n different discrete random variables, named $X_{1}, X_{2}, \ldots, X_{n}$. Each random variable separately has an entropy $H\left(X_{i}\right)$, for $1 \leq i \leq n$.
a) What is the upper bound on the joint entropy $H\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ of all these random variables $X_{1}, X_{2}, \ldots, X_{n}$ given that $H\left(X_{i}\right)$, for $1 \leq i \leq n$ are fixed? [3 points]
b) Under what conditions will this upper bound be reached?
c) What is the lower bound on the joint entropy $H\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ of all these random variables? [4 points]
d) Under what condition will this upper bound be reached? [4 points]
e) Assume the vector $\left[X_{1}, X_{2}, \ldots, X_{n}\right]$ is observed many times and one would like to compress it. Denote at time i the observed random vector as $\left[X_{1, i}, X_{2, i}, \ldots, X_{n, i}\right]$. The distribution of [$\left.X_{1, i}, X_{2, i}, \ldots, X_{n, i}\right]$ is according to $\left[X_{1}, X_{2}, \ldots, X_{n}\right]$ for all i and for $i \neq j\left[X_{1, i}, X_{2, i}, \ldots, X_{n, i}\right]$ is independent of $\left[X_{1, j}, X_{2, j}, \ldots, X_{n, j}\right]$.
Given that you have the possibility to optimally compress without any loss a sequence of random variable distributed i.i.d. but not a sequence of random vector. Provide a coding schemes for an optimal lossless compression for the random vector $\left[X_{1}, X_{2}, \ldots, X_{n}\right]$ given that they are distributed according to the distributions you found in subexercise 2 b and subexercise 2d.

Solution:

a) The upper bound is $\sum_{i=1}^{n} H\left(X_{i}\right)$.
b) It can be achieved if all $X_{i} \mathrm{~s}$ are independent.
c) The lower bound is $H\left(X_{i}\right)$, where X_{i} has the largest entropy.
d) It can be achieved if for all $j \neq i: X_{j}=f_{j}\left(X_{i}\right)$ for some function f_{j}.
e) As in subexercise 2 b , all $X_{i} \mathrm{~s}$ are independent, thus we must encode each of them apart. For subexercise 2d, we only encode the X_{i} with the largest entropy, and use the fact that any other X_{j} is a function of it to decode.
3) Blahut-Arimoto's algorithm (35 points) Recall, that the capacity of a memoryless channel is given by

$$
C=\max _{p(x)} I(X ; Y) .
$$

Solving this optimization problem is a difficult task for the general channel. In this question we develop an iterative algorithm for finding the solution for a fixed channel $p(y \mid x)$.
a) First, prove that the mutual information as a function of $p(x)$ and $p(x \mid y)$ as below. [3 points]

$$
I(X ; Y)=\sum_{x, y} p(x) p(y \mid x) \log \frac{p(x \mid y)}{p(x)}
$$

b) Show that $I(X ; Y)$ as written above is convex in both $p(x), p(x \mid y)$ (Hint. You may use the Log-Sum-inequality). [8 points]
c) Find an expression for $p(x)$ that maximizes $I(X ; Y)$ when $p(x \mid y)$ is fixed (Hint. You may use the Lagrange multipliers method with the constraint $\sum_{x} p(x)=1$). [10 points]
d) Find an expression for $p(x \mid y)$ that maximizes $I(X ; Y)$ when $p(x)$ is fixed (Hint. You may use the Lagrange multipliers method with constraints $\sum_{x} p(x \mid y)=1$ for all y). [9 points]
e) Using (d), conclude that $C=\max _{p(x), p(x \mid y)} I(X ; Y)$. [5 points]

The algorithm is performed by maximizing in each iteration over another variable; first over $p(x)$ when $p(x \mid y)$ is fixed, then over $p(x \mid y)$ when $p(x)$ is fixed, and so on. This iterative algorithm converges, and hence one can find the capacity of any DMC $p(y \mid x)$ with reasonable alphabet size.

Solution:

a) Since $I(X ; Y)=H(X)-H(X \mid Y)$, the answer is obvious.
b) Recall, that the Log-Sum inequality is

$$
\sum_{i=1}^{n} a_{i} \log \frac{a_{i}}{b_{i}} \geq\left(\sum_{i=1}^{n} a_{i}\right) \log \frac{\sum_{i=1}^{n} a_{i}}{\sum_{i=1}^{n} b_{i}} .
$$

Hence

$$
\begin{aligned}
& \left(\lambda p_{1}(x)+\quad(1-\lambda) p_{2}(x)\right) \log \frac{\lambda p_{1}(x)+(1-\lambda) p_{2}(x)}{\lambda p_{1}(x \mid y)+(1-\lambda) p_{2}(x \mid y)} \\
& \leq \lambda p_{1}(x) \log \frac{p_{1}(x)}{p_{1}(x \mid y)}+(1-\lambda) p_{2}(x) \log \frac{p_{2}(x)}{p_{2}(x \mid y)} .
\end{aligned}
$$

Taking the reciprocal of the logarithms yields

$$
\begin{aligned}
&\left(\lambda p_{1}(x)+\right.\left.(1-\lambda) p_{2}(x)\right) \log \frac{\lambda p_{1}(x \mid y)+(1-\lambda) p_{2}(x \mid y)}{\lambda p_{1}(x)+(1-\lambda) p_{2}(x)} \\
& \geq \lambda p_{1}(x) \log \frac{p_{1}(x \mid y)}{p_{1}(x)}+(1-\lambda) p_{2}(x) \log \frac{p_{2}(x \mid y)}{p_{2}(x)} .
\end{aligned}
$$

Multiplying by $p(y \mid x)$ and summing over all x, y, and letting $\mathcal{I}(p(x), p(x \mid y))$ be the mutual information as in (a), we obtain

$$
\begin{aligned}
\mathcal{I}\left(\lambda p_{1}(x)+\right. & (1-\lambda) p_{2}(x), \lambda p_{1}(x \mid y)+(1-\lambda) p_{2}(x \mid y) \\
& \geq \lambda \mathcal{I}\left(p_{1}(x), p_{1}(x \mid y)\right)+(1-\lambda) \mathcal{I}\left(p_{2}(x), p_{2}(x \mid y)\right) .
\end{aligned}
$$

c) Define the lagrangian

$$
L=\sum_{x, y} p(x) p(y \mid x) \log \frac{p(x \mid y)}{p(x)}+\mu\left(\sum_{x} p(x)-1\right)
$$

and differentiate over $p(x)$. Solving $\frac{\partial L}{\partial p(x)}=0$ provides us with

$$
p(x)=\frac{\prod_{y} p(x \mid y)^{p(y \mid x)}}{\sum_{x} \prod_{y} p(x \mid y)^{p(y \mid x)}}
$$

d) Define the lagrangian

$$
J=\sum_{x, y} p(x) p(y \mid x) \log \frac{p(x \mid y)}{p(x)}+\mu(y)\left(\sum_{x} p(x \mid y)-1\right)
$$

and differentiate over $p(x \mid y)$. Solving $\frac{\partial J}{\partial p(x \mid y)}=0$ provides us with

$$
p(x \mid y)=\frac{p(x) p(y \mid x)}{\sum_{x} p(x) p(y \mid x)}
$$

e) The expression for $p(x \mid y)$ is the one that corresponds to $p(x)$, and hence maximizing over $p(x), p(x \mid y)$ is the same as over $p(x)$ alone.
4) Source-channel coding problem(20 points) Consider the source-channel coding problem given in Fig. 1, where V, X, Y, W have a Binary alphabet. The source V is i.i.d. Bernoulli (p), and the channel is in Fig. 2.

Fig. 1. A source-channel coding problem

Fig. 2. The channel.
a) What is the capacity of the channel given in Fig. 2? [8 points]
b) Assume that error-free bits can be transmitted through the channel. What is the minimum rate in which the source V can be encoded such that the source decoder can reconstruct the source V losslessy? [4 points]
c) For what values of p can the source V be reconstructed losslessly using the scheme in Fig. 1 (you may use the inverse of H, i.e., $H^{-1}(q)$)? [4 points]
d) Would the answer to 4 c changes if a joint source-channel coding and decoding is allowed? [4 points]

Solution:

a) We first write the mutual information function: $I(X ; Y)=H(Y)-H(Y \mid X)$. Note that $H(Y \mid X)=p H(0.5)+(1-p) H(0.1)$, where $p=p(x=0)$. As for $H(Y)$, note that Y is distributed $\sim B(0.9-0.4 p)$. Hence,
$I(X ; Y)=-p H(0.5)-(1-p) H(0.1)-(0.9-0.4 p) \log (0.9-0.4 p)-(0.1+0.4 p) \log (0.1+0.4 p)$
Solving $\frac{\partial I(X ; Y)}{\partial p}=0$ leaves us with

$$
0.4 \log \frac{0.9-0.4 p}{0.1+0.4 p}=1-H(0.1)
$$

or $p=0.4623$. Thus, $C=0.1476$.
b) The minimum rate, of course, is $R=H(p)$ since $V \sim B(p)$.
c) We require that $R \leq C$. Recall that $H^{-1}(C)$ has to values, given by $a, 1-a$. Thus, $p \leq a, p \geq$ $1-a$ is the answer.
d) No, it would not change. This is due to the fact that for DMCs, it doesn't matter if you do joint source-channel decoding (source-channel separation theorem).

Good Luck!

