1) **True or False** (20 points)

Copy each relation to your notebook and write true or false. Then, if it’s true, prove it. If it is false give a counterexample or prove that the opposite is true.

a) Let X,Y be two random variables. Then $H(X - Y) \leq H(X|Y)$. [4 points]

b) For any finite alphabet random variables $H(X,Y,Z) - H(X,Y) \geq H(X,Z) - H(X)$. [4 p.]

c) Which of the following sequence of code-lengths are a valid binary huffman codes (can be more than one answer)? [8 points]

- 1,2,3,3
- 1,2,2,3
- 1,3,3,3
- 2,2,2,2

d) Assume a memoryless channel given by $p(y|x)$, and the capacity is given by $C = \max_{p(x)} I(X;Y)$. The capacity can be strictly increased by forming the output to be $Y_1 = f(Y)$. [4 points]

2) **Joint Entropy** (25 points) Consider k different discrete random variables, named $X_1, X_2, ..., X_k$. Each random variable separately has an entropy $H(X_i)$, for $1 \leq i \leq k$.

a) What is the upper bound on the joint entropy $H(X_1, X_2, ..., X_k)$ given that $H(X_i)$, for $1 \leq i \leq k$ are fixed?

b) Under what conditions will this upper bound be reached?

c) What is the lower bound on the joint entropy $H(X_1, X_2, ..., X_k)$ given that $H(X_i)$, for $1 \leq i \leq k$ are fixed?

d) Under what condition will this lower bound be reached?

e) Assume the vector $[X_1, X_2, ..., X_k]$ is observed many times and one would like to compress it. Denote at time i the observed random vector as $[X_{1,i}, X_{2,i}, ..., X_{k,i}]$. The distribution of $[X_{1,i}, X_{2,i}, ..., X_{k,i}]$ is according to $[X_1, X_2, ..., X_k]$ for all i and for $i \neq j$ $[X_{1,i}, X_{2,i}, ..., X_{k,i}]$ is independent of $[X_{1,j}, X_{2,j}, ..., X_{k,j}]$.

Given that you have the possibility to optimally compress without any loss a sequence of scalar random variable distributed i.i.d. but not a sequence of random vectors. Provide a coding schemes (using the scalar compressing scheme) for an optimal lossless compression for the set of random vectors $\{[X_{1,i}, X_{2,i}, ..., X_{k,i}]\}_{i=1}^n$ where n is a very large number, given that they are distributed according to the distributions of $[X_1, X_2, ..., X_k]$ that you found in subexercise 2b and subexercise 2d. (In other words, you are able to optimally compress a sequence of scalar random variable X_i distributed i.i.d. , how would you use it to optimally compress the a set of vectors $[X_1, X_2, ..., X_k]$ where its distribution is according to subexercise 2b and 2d)

3) **Blahut-Arimoto’s algorithm** (35 points) Recall, that the capacity of a memoryless channel is given by

$$C = \max_{p(x)} I(X;Y).$$

Solving this optimization problem is a difficult task for the general channel. In this question we develop an iterative algorithm for finding the solution for a fixed channel $p(y|x)$.

a) (3 p.) Prove that the mutual information as a function of $p(x)$ and $p(x|y)$ may be written as

$$I(X;Y) = \sum_{x,y} p(x)p(y|x) \log \frac{p(x|y)}{p(x)}.$$

b) Show that $I(X;Y)$ as written above is concave in both $p(x)$, $p(x|y)$ (Hint. You may use the
log-sum-inequality). [8 points]

c) Find an expression for \(p(x) \) that maximizes \(I(X;Y) \) when \(p(x|y) \) is fixed (Hint. You may use the Lagrange multipliers method with the constraint \(\sum_x p(x) = 1 \). No need to take into account that \(p(x) \geq 0 \) since it will obtained anyway.) [10 points]

d) Find an expression for \(p(x|y) \) that maximizes \(I(X;Y) \) when \(p(x) \) is fixed (Hint. You may use the Lagrange multipliers method with constraints \(\sum_x p(x|y) = 1 \) for all \(y \). No need to take into account that \(p(x|y) \geq 0 \) since it will obtained anyway.). [9 points]

e) Using (d), conclude that \(C = \max_{p(x),p(x|y)} I(X;Y) \). [5 points]

The Blahut-Arimoto’s algorithm is performed by maximizing in each iteration over another variable; first over \(p(x) \) when \(p(x|y) \) is fixed, then over \(p(x|y) \) when \(p(x) \) is fixed, and so on. This iterative algorithm converges, and hence one can find the capacity of any DMC \(p(y|x) \) with reasonable alphabet size.

Reminder of Lagrange multiplier (or more generally the KKT condition): We all know that if we have a concave function \(f(x) \) with a finite maximum and its derivative exists, then the maximum is obtained at \(x \) that satisfies \(\frac{df(x)}{dx} = 0 \). Now, if we need to find the maximum of the concave function \(f(x) \) only for \(x \) that satisfies the affine condition \(h(x) = 0 \), then we define \(L(x, \nu) = f(x) + \nu h(x) \) and the maximum is obtained at \(x \) that satisfies \(\frac{dL(x,\nu)}{dx} = 0 \) and \(h(x) = 0 \); this gives us two equations that allow us to find \(x \) and \(\nu \). More generally, in case that \(\overline{x} = [x_1, x_2, ..., x_k] \) is a vector of size \(k \) and we have \(l \) affine constraints, then \(L(\overline{x}, \overline{\nu}) = f(\overline{x}) + \sum_{j=1}^{l} \nu_j h_j(\overline{x}) \) and the maximum is obtained at \(\overline{x} \) that satisfies \(\frac{dL(\overline{x},\overline{\nu})}{d\overline{x}_i} = 0 \) for all \(1 \leq i \leq k \) and \(h_j(\overline{x}) = 0 \) for all \(1 \leq j \leq l \).

4) **Source-channel coding problem** (20 points) Consider the source-channel coding problem given in Fig. 1, where \(V, X, Y, \hat{V} \) have a Binary alphabet. The source \(V \) is i.i.d. Bernoulli \((p) \), and the channel is in Fig. 2.

![Fig. 1. A source-channel coding problem](image1)

![Fig. 2. The channel.](image2)

- a) Assume that error-free bits can be transmitted through the channel. What is the minimum rate in which the source \(V \) should be encoded such that the source decoder can reconstruct the source \(V \) losslessly? [4 points]
- b) What is the capacity of the channel given in Fig. 2? [8 points]
- c) For what values of \(p \) can the source \(\hat{V} \) be reconstructed losslessly using the scheme in Fig. 1 (you may use the inverse of \(H \), i.e., \(H^{-1}(q) \))? [4 points]
- d) Would the answer to 4c changes if a joint source-channel coding and decoding is allowed?[4 p.]

Good Luck!