Final Exam

1) True or False (20 points)

Copy each relation to your notebook and write true or false. Then, if it's true, prove it. If it is false give a counterexample or prove that the opposite is true.
a) Let X, Y be two random variables. Then $H(X-Y) \leq H(X \mid Y)$. [4 points]
b) For any finite alphabet random variables $H(X, Y, Z)-H(X, Y) \geq H(X, Z)-H(X)$.[4 p.]
c) Which of the following sequence of code-lengths are a valid binary huffman codes(can be more than one answer)? [8 points]

- 1,2,3,3
- $1,2,2,3$
- 1,3,3,3
- 2,2,2,2
d) Assume a memoryless channel given by $p(y \mid x)$, and the capacity is given by $C=$ $\max _{p(x)} I(X ; Y)$. The capacity can be strictly increased by forming the output to be $Y_{1}=$ $f(Y) .[4$ points]

2) Joint Entropy (25 points) Consider k different discrete random variables, named $X_{1}, X_{2}, \ldots, X_{k}$. Each random variable separately has an entropy $H\left(X_{i}\right)$, for $1 \leq i \leq k$.
a) What is the upper bound on the joint entropy $H\left(X_{1}, X_{2}, \ldots, X_{k}\right)$ given that $H\left(X_{i}\right)$, for $1 \leq$ $i \leq k$ are fixed?
b) Under what conditions will this upper bound be reached?
c) What is the lower bound on the joint entropy $H\left(X_{1}, X_{2}, \ldots, X_{k}\right)$ given that $H\left(X_{i}\right)$, for $1 \leq$ $i \leq k$ are fixed?
d) Under what condition will this lower bound be reached?
e) Assume the vector $\left[X_{1}, X_{2}, \ldots, X_{k}\right]$ is observed many times and one would like to compress it. Denote at time i the observed random vector as $\left[X_{1, i}, X_{2, i}, \ldots, X_{k, i}\right]$. The distribution of [$\left.X_{1, i}, X_{2, i}, \ldots, X_{k, i}\right]$ is according to $\left[X_{1}, X_{2}, \ldots, X_{k}\right.$] for all i and for $i \neq j\left[X_{1, i}, X_{2, i}, \ldots, X_{k, i}\right]$ is independent of [$X_{1, j}, X_{2, j}, \ldots, X_{k, j}$].
Given that you have the possibility to optimally compress without any loss a sequence of scalar random variable distributed i.i.d. but not a sequence of random vectors. Provide a coding schemes (using the scalar compressing scheme) for an optimal lossless compression for the set of random vectors $\left\{\left[X_{1, i}, X_{2, i}, \ldots, X_{k, i}\right]\right\}_{i=1}^{n}$ where n is a very large number, given that they are distributed according to the distributions of $\left[X_{1}, X_{2}, \ldots, X_{k}\right]$ that you found in subexercise 2 b and subexercise 2d. (In other words, you are able to optimally compress a sequence of scalar random variable X_{l} distributed i.i.d., how would you use it to optimally compress the a set of vectors $\left[X_{1}, X_{2}, \ldots, X_{k}\right.$] where its distribution is according to subexercise 2 b and 2 d)
3) Blahut-Arimoto's algorithm (35 points) Recall, that the capacity of a memoryless channel is given by

$$
C=\max _{p(x)} I(X ; Y) .
$$

Solving this optimization problem is a difficult task for the general channel. In this question we develop an iterative algorithm for finding the solution for a fixed channel $p(y \mid x)$.
a) (3 p.) Prove that the mutual information as a function of $p(x)$ and $p(x \mid y)$ may be written as

$$
I(X ; Y)=\sum_{x, y} p(x) p(y \mid x) \log \frac{p(x \mid y)}{p(x)}
$$

b) Show that $I(X ; Y)$ as written above is concave in both $p(x), p(x \mid y)$ (Hint. You may use the
log-sum-inequality). [8 points]
c) Find an expression for $p(x)$ that maximizes $I(X ; Y)$ when $p(x \mid y)$ is fixed (Hint. You may use the Lagrange multipliers method with the constraint $\sum_{x} p(x)=1$. No need to take into account that $p(x) \geq 0$ since it will obtained anyway.)[10 points]
d) Find an expression for $p(x \mid y)$ that maximizes $I(X ; Y)$ when $p(x)$ is fixed (Hint. You may use the Lagrange multipliers method with constraints $\sum_{x} p(x \mid y)=1$ for all y. No need to take into account that $p(x \mid y) \geq 0$ since it will obtained anyway.). [9 points]
e) Using (d), conclude that $C=\max _{p(x), p(x \mid y)} I(X ; Y)$. [5 points]

The Blahut-Arimoto's algorithm is performed by maximizing in each iteration over another variable; first over $p(x)$ when $p(x \mid y)$ is fixed, then over $p(x \mid y)$ when $p(x)$ is fixed, and so on. This iterative algorithm converges, and hence one can find the capacity of any DMC $p(y \mid x)$ with reasonable alphabet size.
Reminder of Lagrange multiplier (or more generally the KKT condition): We all know that if we have a concave function $f(x)$ with a finite maximum and its derivative exists, then the maximum is obtained at x that satisfies $\frac{d f(x)}{d x}=0$. Now, if we need to find the maximum of the concave function $f(x)$ only for x that satisfies the affine condition $h(x)=0$, then we define $L(x, \nu)=f(x)+\nu h(x)$ and the maximum is obtained at x that satisfies $\frac{\partial L(x, \nu)}{\partial x}=0$ and $h(x)=0$; this gives us two equations that allow us to find x and ν. More generally, in case that $\bar{x}=\left[x_{1}, x_{2}, . ., x_{k}\right]$ is a vector of size k and we have l affine constraints, then $L(\bar{x}, \bar{\nu})=f(\bar{x})+\sum_{j=1}^{l} \nu_{j} h_{j}(\bar{x})$ and the maximum is obtained at \bar{x} that satisfies $\frac{\partial L(\bar{x}, \bar{\nu})}{\partial x_{i}}=0$ for all $1 \leq i \leq k$ and $h_{j}(\bar{x})=0$ for all $1 \leq j \leq l$.
4) Source-channel coding problem(20 points) Consider the source-channel coding problem given in Fig. 1, where V, X, Y, V have a Binary alphabet. The source V is i.i.d. Bernoulli (p), and the channel is in Fig. 2.

Fig. 1. A source-channel coding problem

Fig. 2. The channel.
a) Assume that error-free bits can be transmitted through the channel. What is the minimum rate in which the source V should be encoded such that the source decoder can reconstruct the source V losslessly? [4 points]
b) What is the capacity of the channel given in Fig. 2? [8 points]
c) For what values of p can the source V be reconstructed losslessly using the scheme in Fig. 1 (you may use the inverse of H, i.e., $H^{-1}(q)$)? [4 points]
d) Would the answer to 4 c changes if a joint source-channel coding and decoding is allowed? [4 p.]

