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Introduction to Information Theory and Machine Learning July 25th, 2023.

(Prof. Permuter Haim, Mr. Bashar Huleihel and Ms. Yara Huleihel)

Final Exam - Moed B

Total time for the exam: 3 hours!

Please copy the following sentence and sign it: “ I am respecting the rules of the exam: Signature: ”

Important: For True / False questions, copy the statement to your notebook and write clearly true or false. You should prove the

statement if true, or disprove it, e.g. by providing a counter-example, otherwise.

1) Transfer Entropy (36 Points): Define the Transfer Entropy

TE
(k)
X→Y(t) = I

(

Yt;X
(k)
t−1

∣

∣Y
(k)
t−1

)

, (1)

where X
(k)
t := (Xt, Xt−1, ..., Xt−k+1) is a notation for length-k history of a variable X up to time t.

Let {Xt} and {Yt} be stationary and first-order Markov processes taking values from the binary alphabet:

• Process {Xt} has a deterministic transitions from 0 to 1 or 1 to 0 each time step, i.e.

P (Xt|Y
t−1, Xt−1) = P (Xt|Xt−1), P (Xt = x|Xt−1 = x⊕ 1) = 1, (2)

where P (X0) ∼ Ber
(

1
2

)

.

• Process {Yt} is a noisy observation of the last time step of {Xt}. Assume α 6= 1
2 and 0 < α < 1,

P (Yt|Y
t−1, Xt−1) = P (Yt|Xt−1), P (Yt = y|Xt−1 = x) =

{

1− α if y = x

α if y 6= x
. (3)

Reminder: A stochastic process {Xt} is said to be stationary if for every t1, t2 and h, the joint probability distribution function

P (Xt1 , Xt1+1, ..., Xt1+h) is equal to P (Xt2 , Xt2+1, ..., Xt2+h), i.e., the joint probability distribution is invariant under time

shifts.

a) (8 points) True / False The described joint process {Xt, Yt} is stationary. Explain your answer.

Solution: True.

Since P (X0) ∼ Ber
(

1
2

)

, we infer that P (Xt) ∼ Ber
(

1
2

)

for every t - thus X is markov that does not depend on t, and

therefore the process X is stationary. Accordingly, we obtain that

P (Xt = x, Yt = y) =

{

1
2 (1− α) if y 6= x
1
2α if y = x

. (4)

It now follows that P (Xt1 , Yt1) = P (Yt1 |Xt1)P (Xt1). Specifically, P (Xt1) is stationary and (3) reveals that P (Yt1 |Xt1) is

not dependent on t.

Then we get that P (Xt1 , Yt1 , ..., Xt1+h, Yt1+h) = P (Xt1 , ..., Xt1+h)P (Yt1 , ..., Yt1+h|Xt1 , ..., Xt1+h) is stationary since

P (Xt1 , ..., Xt1+h) is stationary and P (Yt1 , ..., Yt1+h|Xt1 , ..., Xt1+h) is memoryless and does not depend on t from the

definition in (4).

b) (6 points) True / False P (Yt = y,Xt−1 = x) 6= P (Xt = x, Yt−1 = y).
Solution: False.

From the definition of the process we infer the followings,

P (Yt = y,Xt−1 = x) = P (Yt−1 = y,Xt−2 = x) (5a)

= P (Yt−1 = y,Xt = x), (5b)

where (5a) is from stationarity, and (5b) is from the definition of process {Xt}, since Xt is equal to Xt−2.

c) (6 points) Calculate the Mutual Information between Yt and Xt−1, i.e. I(Yt;Xt−1).
Hint: Consider to use the fact that Yt = Xt−1 ⊕ Zt−1, where {Zt} are i.i.d. Ber(α).
Solution: Consider a process {Zt} distributed i.i.d. Ber(α). Then,

I(Yt;Xt−1) = H(Yt)−H(Yt|Xt−1) (6a)

= H(Yt)−H(Xt−1 ⊕ Zt−1|Xt−1) (6b)

= Hb

(

1

2

)

−H(Zt−1|Xt−1) (6c)

= 1−H(Zt−1) (6d)

= 1−Hb(α) (6e)

> 0, (6f)
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where the last step is true because α 6= 1

2 .

d) (6 points) True / False I(Yt;Xt−1) = I(Xt;Yt−1).
Solution: True.

We showed that P (Yt = y,Xt−1 = x) = P (Xt = x, Yt−1 = y), and from the stationarity of the process P (Yt) =
P (Yt−1), P (Xt) = P (Xt−1), and then we get,

I(Yt;Xt−1) =
∑

P (Yt, Xt−1) log
P (Yt, Xt−1)

P (Yt)P (Xt−1)
(7a)

=
∑

P (Yt−1, Xt) log
P (Yt−1, Xt)

P (Yt−1)P (Xt−1)
= I(Xt;Yt−1). (7b)

e) (6 points) Show that the Transfer Entropy for X → Y with lag k = 1 is non-zero, i.e., TE
(1)
X→Y(t) = I

(

Yt;Xt−1

∣

∣Yt−1

)

> 0.

Hint: Utilize the relation Yt = Xt−1 ⊕ Zt−1, and the fact that if Z1 ∼ Ber(α) and Z2 ∼ Ber(β), then Z1 ⊕ Z2 ∼
Ber(α− 2αβ + β).
Solution: Consider a process {Z̄t} distributed i.i.d. Ber(1− α).

TE
(1)
X→Y(t) = I

(

Yt;Xt−1

∣

∣Yt−1

)

(8a)

= H(Yt|Yt−1)−H(Yt|Yt−1, Xt−1) (8b)

= H(Xt−1 ⊕ Zt−1|Xt−2 ⊕ Zt−2)−H(Yt|Xt−1) (8c)

= H(Xt−1 ⊕ 1⊕ Zt−1 ⊕ 1|Xt−2 ⊕ Zt−2)−Hb(α) (8d)

= H(Xt−2 ⊕ Z̄t−2|Xt−2 ⊕ Zt−2)−Hb(α) (8e)

= H(Xt−2 ⊕ Z̄t−2 ⊕Xt−2 ⊕ Zt−2|Xt−2 ⊕ Zt−2)−Hb(α) (8f)

= H(Z̄t−2 ⊕ Zt−2|Xt−2 ⊕ Zt−2)−H(α) (8g)

= H(Z̄t−2 ⊕ Zt−2)−H(α) (8h)

= Hb(2α
2 − 2α+ 1)−Hb(α) (8i)

> 0. (8j)

Note that the transition from (8g) to the next equation is true due to the fact that Xt−2 is distributed Ber
(

1
2

)

thus Zt−2

independent of Xt−2 ⊕ Zt−2, thus H(Z̄t−2 ⊕ Zt−2|Xt−2 ⊕ Zt−2) = H(Z̄t−2 ⊕ Zt−2).
It’s easy to prove that for the given α ∈ (0, 1)�{ 1

2} the last equation holds - without loss of generality, assume α ∈
(

0, 1
2

)

,

due to the fact that Hb(α) = Hb(1− α). Then we need to prove that 2α2 − 2α+ 1 > α, and for any α ∈
(

0, 1
2

)

this is true.

f) (4 points) Calculate the Transfer Entropy for Y → X with lag k = 1, i.e., TE
(1)
Y→X = I

(

Xt;Yt−1

∣

∣Xt−1

)

.

Solution:

TE
(1)
Y→X (t) = I

(

Xt;Yt−1

∣

∣Xt−1

)

(9a)

= H(Xt|Xt−1)−H(Xt|Xt−1, Yt−1) (9b)

= 0. (9c)

(9c) is correct since X transition autonomously and deterministically, thus H(Xt|Xt−1) = 0, and H(Xt|Xt−1, Yt−1) = 0
Solution Insight - The concept of Transfer Entropy reveals valuable insights when analyzing the relationship between

two processes, X and Y . Unlike mutual information, Transfer Entropy is not symmetric and can provide us with specific

information about the synergy between the past of Y and its current state. Additionally, it uncovers the directional flow of

information between X and Y , particularly in the context of Y ’s past. This makes Transfer Entropy a powerful tool for

understanding the intricate dependencies and information transfer dynamics between these processes.

2) ML algorithms (36 Points): Figure 1 shows the end-to-end communication system considered in this question. This system

takes as input a bit sequence denoted by b, which is then mapped onto symbols, s ∈ S . The sequence of symbols is fed into a

symbol modulator that maps each symbol into a constellation point x ∈ C. Both the modulator and demodulator are implemented

with neural networks, hence they are learnable with trainable parameters θM and θD, respectively. The demodulator maps each

received sample y ∈ C to a probability vector p̃θD
(s|y) over the set of symbols S , as illustrated in Fig.1. Finally, the sent bits

are reconstructed from p̃θD
(s|y) by the symbols-to-bits mapper. We also denote by pθM

(s|y) the distribution induced by the

system up to the point of the output channel (without the demodulator), which depends on the modulator parameters θM . We

would like to approximate the true posterior distribution pθM
(s|y) with the mapping defined by the demodulator p̃θD

(s|y).
Given that the demodulator performs a classification task, the categorical cross-entropy is used as a loss function for training:

L∗(θM ,θD) , ES,Y {− log (p̃θD
(S|Y ))} (10)

We assume that each symbol s ∈ S is uniquely mapped to a constellation point x ∈ C (1:1 mapping), allowing us to replace s

with x in expressions.

a) (5 points) In our system, pθM
(x) represents the true distribution of x, and note it depends on the modulator parameters, θM .
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Fig. 1: Trainable end-to-end communication system. Trainable components are highlighted.

The entropy of X under the distribution parameterized by θM is:

HθM
(X) = −

∑

x

pθM
(x) log (pθM

(x)) (11)

True/False: HθM
(X) = H(S)? Explain why.

Solution:

True. 1:1 mapping. Each symbol is uniquely mapped to a constellation point x ∈ C.

b) (5 points) Given a sequence of i.i.d. samples si and yi over a long period of time, for i = 1, 2, 3, ..., how can you compute

L∗(θM ,θD)?
Solution:

Given a sequence over a long period of time of i.i.d. samples si and yi, for i = 1, 2, 3, ..., you can compute L∗(θM ,θD) by

taking the average of the negative log-likelihood of the predicted probabilities p̃θD
(si|yi) for the true symbols si given the

received samples yi, −
1
L

∑L

i=1 log (p̃θD
(si|yi)). As the number of samples goes to infinity, this average will converge to the

expected value of the log loss function, ES,Y {− log (p̃θD
(S|Y ))}. This is based on the law of large numbers, which states

that as the number of i.i.d. samples increases, the sample average converges to the expected value.

c) (5 points) Recall the 1:1 mapping between s to x. Let:

L(θM ,θD) , EY {H [pθM
(x|y), p̃θD

(x|y)]} (12)

True/False? Is L(θM ,θD) equals L∗(θM ,θD), where L(θM ,θD) is defined in (12), and L∗(θM ,θD) in (10). If yes, prove

it. Otherwise, correct the equation, and explain your reasoning.

Solution:

ES,Y {− log (p̃θD
(S|Y ))} =

∑

y

∑

x

pθM
(x, y) log (p̃θD

(x|y))

=
∑

y

∑

x

pθM
(y)pθM

(x|y) log (p̃θD
(x|y))

= EY

{

∑

x

pθM
(x|y) log (p̃θD

(x|y))

}

= EY {H [pθM
(x|y), p̃θD

(x|y)]} .

d) (5 points) True/False? Is the loss function, L(θM ,θD), as defined in (12) satisfies the following equality? If yes, explain

why. If no, provide the correct expression.

L(θM ,θD) = −
∑

x

∑

y

pθM
(x)pθM

(y|x) log (p̃θD
(x|y)) (13)

Solution:

True.

L(θM ,θD) = EY {H [pθM
(x|y), p̃θD

(x|y)]}

= −
∑

y

p(y)
∑

x

pθM
(x|y) log (p̃θD

(x|y))

= −
∑

y

∑

x

pθM
(x, y) log (p̃θD

(x|y))

= −
∑

x

∑

y

pθM
(x)pθM

(y|x) log (p̃θD
(x|y)).

e) (6 points) True/False? Can the loss function be expressed as the following equation? If yes, prove it. Otherwise, correct the

equation and explain your reasoning.

L(θM ,θD) = H(S)− IθM
(X;Y ) + EY {DKL (pθM

(x|y)‖p̃θD
(x|y))} (14)
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Solution:

True.

L(θM ,θD) = −
∑

x

∑

y

pθM
(x)pθM

(y|x) log (p̃θD
(x|y))

= −
∑

x

∑

y

pθM
(x, y) log

(

p̃θD
(x|y)pθM

(x)

pθM
(x)

)

= −
∑

x

pθM
(x) log (pθM

(x))−
∑

x

∑

y

pθM
(x, y) log

(

p̃θD
(x|y)pθM

(y)

pθM
(x)pθM

(y)

)

= HθM
(X)−

∑

x

∑

y

pθM
(x, y) log

(

pθM
(x, y)

pθM
(x)pθM

(y)

)

−
∑

x

∑

y

pθM
(x, y) log

(

p̃θD
(x|y)

pθM
(x|y)

)

= HθM
(X)− IθM

(X;Y )−
∑

y

pθM
(y)

∑

x

pθM
(x|y) log

(

p̃θD
(x|y)

pθM
(x|y)

)

= H(S)− IθM
(X;Y ) + EY {DKL (pθM

(x|y)‖p̃θD
(x|y))}.

f) (5 points) A student who saw equation (14) claims that:

arg min
θM ,θD

L̂(θM ,θD) = arg min
θM ,θD

L(θM ,θD) (15)

where L̂(θM ,θD) is defined as:

L̂(θM ,θD) = L(θM ,θD)−H(S) (16)

Is the student claim True/False? Please explain/justify your answer.

Solution:

True. The explanation is that L and L̂ differ by a constant, H(S) doesn’t depend on θM or, θD.

g) (5 points) Please explain the contribution/meaning of minimizing the first loss component of L̂(θM ,θD), namely −IθM
(X;Y ),

and the second loss component of L̂(θM ,θD), namely Ey{DKL (pθM
(x|y)‖p̃θD

(x|y))}, to the overall communication system.

Solution:

Training the end-to-end system by minimizing L̂ corresponds to maximizing the mutual information of the channel inputs

X and outputs Y , which is the capacity of the channel, while minimizing the KL divergence between the true posterior

distribution pθM
(x|y) and the one learned by the receiver p̃θD

(x|y), trying to minimize the error.

Insight for this question: The goal of this task is to maximize the mutual information I(X;Y ) between the channel input

X and the output Y , which is the capacity of the channel, by optimizing the constellation. Typically, finding the optimal p(x)
is challenging as it requires knowledge of the channel distribution p(y|x). We aim to demonstrate that our objective can be

achieved by minimizing the categorical cross-entropy.

3) Polar compressor (32 Points): For a positive integer N , let n = 2N and consider the invertible matrix Pn ∈ Fn×n
2 defined by:

Pn =

[

1 0
1 1

]⊗N

.

Further, consider Zn = (Z1, . . . , Zn) ∼ Bern(p)n where p ∈ (0, 0.5), and let Wn = Zn · Pn.

a) (4 points) For both channel coding and source coding, we do polarization. Explain briefly the difference in polarization

between channel coding and source coding.

Solution:

The difference between the two problems lies in their objectives:

• Channel coding deals with transmitting information over a noisy communication channel. The main objective of channel

coding is to introduce redundancy into the transmitted data so that errors introduced by the channel can be corrected or

detected at the receiver. In the context of polar codes, besides the information bits we also consider frozen bits which

indeed introduce redundancy,

• Source coding focuses on compressing the original data to reduce the number of bits required for transmission. The main

objective of source coding is to efficiently represent the source data with fewer bits, thus achieving a lower compression

ratio. In the context of polar codes, the encoder’s operation involves multiplying the input data by the matrix Pn and then

representing the message with fewer bits corresponding to those with the highest entropy, thus reducing data redundancy

for compression.

b) (4 points) Define the rate for source coding and channel coding, and explain whether you want to maximize or minimize

those rates.

Solution:

The rate in source coding refers to the average number of bits per symbol used to represent the source data. The lower the

rate, the more efficient the compression, as it implies that fewer bits are needed to represent each symbol from the source.
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The rate in channel coding refers to the ratio of useful information bits to the total number of transmitted bits, including the

redundant bits. The lower the rate, the more redundant bits are used to protect the data, and consequently, the more resilient

the communication system becomes against errors. However, a lower rate also means a lower throughput for the system, as

more bits need to be transmitted, and therefore, our goal is to maximize the rate in channel coding, and minimize the rate in

source coding.

c) (6 points) Assume n = 4 and consider the entropy terms H(Wi|W
i−1) for i ∈ {1, . . . , 4}. Determine and explain which

one is the highest, and calculate this specific entropy term explicitly in terms of p.

Solution:

Since p ∈ (0, 0.5), we know that polarization occurs with the chosen polarization matrix P4. Thus, the highest entropy term

among the four is H(W1), which corresponds to applying the transform twice, each time taking the worst direction. To

calculate H(W1), let us determine P (W1 = 1). Note that

W1 = Z1 ⊕ Z2 ⊕ Z3 ⊕ Z4,

where ⊕ denotes the XOR operation. Thus, W1 = 1 if the sequence Z4 consists of either exactly 3 zeros or exactly 3 ones.

Accordingly, we can conclude that

P (W1 = 1) = 4p3(1− p) + 4(1− p)3p.

Thus,

H(W1) = Hb(4p
3(1− p) + 4(1− p)3p).

d) (6 points) Define the set Sτ as follows:

Sτ = {i ∈ {1, . . . , 4} | H(Wi|W
i−1) ≥ τ}.

For τ̂ = −E[log2(PW1
)], write explicitly the set Sτ̂ . Explain your result.

Solution:

Note that H(W1) = −E[log2(PW1
)], and therefore, τ̂ is exactly equal to H(W1). Further, we know that polarization occurs

and H(W1) has the highest entropy among the 4 terms. Combining this with the fact that τ̂ = H(W1), we can conclude that

the set Sτ̂ includes only the index 1, i.e., Sτ̂ = 1.

e) (6 points) Consider z4 = [1, 0, 1, 1] and the set Sτ̂ that you found in the previous item. What is the output of the encoder?

Solution:

Let us follow the operation of the encoder. The first step is multiplying z4 by the invertible matrix P4. This results in the

following vector:

w4 = z4 · P4

=
[

1, 0, 1, 1
]

·









1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1









=
[

1, 1, 0, 1
]

.

Now since the set Sτ̂ consists only of the first index, then the output of the encoder is w|Sτ̂ | = w1 = 1.

f) (6 points) This time let n = 2, and assume that Z1 ∼ Bern(p1) and Z2 ∼ Bern(p2) are sampled conditioned on Z1+Z2 = a

(for a ∈ F2). Let b(p1, p2, a) denote the probability of Z2 being 1 conditioned on Z1 + Z2 = a. Find b(p1, p2, a) for both

a = 0 and a = 1.

Solution:

We calculate b(p1, p2, 0) as follows:

b(p1, p2, 0) = P (Z2 = 1|Z1 + Z2 = 0)

= P (Z1 = 1, Z2 = 1|Z1 + Z2 = 0)

=
P (Z1 = 1, Z2 = 1)

P (Z1 + Z2 = 0)

=
p1p2

p1p2 + (1− p1)(1− p2)
.

In the same manner we get:

b(p1, p2, 1) =
P (Z1 = 0, Z2 = 1)

P (Z1 + Z2 = 1)

=
(1− p)p2

p1(1− p2) + (1− p1)p2
.
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Good Luck!


