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Introduction to Information Theory and Machine Learning July 25th, 2023.

(Prof. Permuter Haim, Mr. Bashar Huleihel and Ms. Yara Huleihel)

Final Exam - Moed B

Total time for the exam: 3 hours!

Please copy the following sentence and sign it: “ I am respecting the rules of the exam: Signature: ”

Important: For True / False questions, copy the statement to your notebook and write clearly true or false. You should prove the

statement if true, or disprove it, e.g. by providing a counter-example, otherwise.

1) Transfer Entropy (36 Points): Define the Transfer Entropy

TE
(k)
X→Y

(t) = I
(

Yt;X
(k)
t−1

∣

∣Y
(k)
t−1

)

, (1)

where X
(k)
t := (Xt, Xt−1, ..., Xt−k+1) is a notation for length-k history of a variable X up to time t.

Let {Xt} and {Yt} be stationary and first-order Markov processes taking values from the binary alphabet:

• Process {Xt} has a deterministic transitions from 0 to 1 or 1 to 0 each time step, i.e.

P (Xt|Y
t−1, Xt−1) = P (Xt|Xt−1), P (Xt = x|Xt−1 = x⊕ 1) = 1, (2)

where P (X0) ∼ Bern
(

1
2

)

.

• Process {Yt} is a noisy observation of the last time step of {Xt}. Assume α 6= 1
2 and 0 < α < 1,

P (Yt|Y
t−1, Xt−1) = P (Yt|Xt−1), P (Yt = y|Xt−1 = x) =

{

1− α if y = x

α if y 6= x
. (3)

Reminder: A stochastic process {Xt} is said to be stationary if for every t1, t2 and h, the joint probability distribution function

P (Xt1 , Xt1+1, ..., Xt1+h) is equal to P (Xt2 , Xt2+1, ..., Xt2+h), i.e., the joint probability distribution is invariant under time

shifts.

a) (8 points) True / False The described joint process {Xt, Yt} is stationary. Explain your answer.

b) (6 points) True / False P (Yt = y,Xt−1 = x) 6= P (Xt = x, Yt−1 = y).
c) (6 points) Calculate the Mutual Information between Yt and Xt−1, i.e. I(Yt;Xt−1).

Hint: Consider to use the fact that Yt = Xt−1 ⊕ Zt−1, where {Zt} are i.i.d. Bern(α).
d) (6 points) True / False I(Yt;Xt−1) = I(Xt;Yt−1).

e) (6 points) Show that the Transfer Entropy for X → Y with lag k = 1 is non-zero, i.e., TE
(1)
X→Y

(t) = I
(

Yt;Xt−1

∣

∣Yt−1

)

> 0.

Hint: Utilize the relation Yt = Xt−1 ⊕ Zt−1, and the fact that if Z1 ∼ Bern(α) and Z2 ∼ Bern(β), then Z1 ⊕ Z2 ∼
Bern(α− 2αβ + β).

f) (4 points) Calculate the Transfer Entropy for Y → X with lag k = 1, i.e., TE
(1)
Y→X

= I
(

Xt;Yt−1

∣

∣Xt−1

)

.

2) ML algorithms (36 Points): Figure 1 shows the end-to-end communication system considered in this question. This system

takes as input a bit sequence denoted by b, which is then mapped onto symbols, s ∈ S . The sequence of symbols is fed into a

symbol modulator that maps each symbol into a constellation point x ∈ C. Both the modulator and demodulator are implemented

with neural networks, hence they are learnable with trainable parameters θM and θD, respectively. The demodulator maps each

received sample y ∈ C to a probability vector p̃θD
(s|y) over the set of symbols S , as illustrated in Fig.1. Finally, the sent

bits are reconstructed from p̃θD
(s|y) by the symbols-to-bits mapper. Let us denote by pθM

(s|y) the distribution induced by the

system up to the point of the output channel (without the demodulator), which depends on the modulator parameters θM . We

would like to approximate the true posterior distribution pθM
(s|y) with the mapping defined by the demodulator p̃θD

(s|y).
Given that the demodulator performs a classification task, the categorical cross-entropy is used as a loss function for training:

L∗(θM ,θD) , ES,Y {− log (p̃θD
(S|Y ))} (4)

We assume that each symbol s ∈ S is uniquely mapped to a constellation point x ∈ C (1:1 mapping), allowing us to replace s

with x in expressions.
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Fig. 1: Trainable end-to-end communication system. Trainable components are highlighted.
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a) (5 points) In our system, pθM

(x) represents the true distribution of x, and note that it depends on the modulator parameters,

θM . The entropy of X under the distribution parameterized by θM is:

HθM
(X) = −

∑

x

pθM
(x) log (pθM

(x)) (5)

True/False: HθM
(X) = H(S)? Explain why.

b) (5 points) Given a sequence of i.i.d. samples si and yi over a long period of time, for i = 1, 2, 3, ..., how can you compute

L∗(θM ,θD)?
c) (5 points) Recall the 1:1 mapping between s to x. Let:

L(θM ,θD) , EY {H [pθM
(x|y), p̃θD

(x|y)]} (6)

True/False L(θM ,θD) equals L∗(θM ,θD), where L(θM ,θD) is defined in (6), and L∗(θM ,θD) is defined in (4). If yes,

prove it. Otherwise, correct the equation, and explain your reasoning.

d) (5 points) True/False The loss function, L(θM ,θD), as defined in (6), satisfies the following equality:

L(θM ,θD) = −
∑

x

∑

y

pθM
(x)pθM

(y|x) log (p̃θD
(x|y)). (7)

If yes, explain why. If no, provide the correct expression.

e) (6 points) True/False The loss function can be expressed as the following equation:

L(θM ,θD) = H(S)− IθM
(X;Y ) + EY {DKL (pθM

(x|y)‖p̃θD
(x|y))}. (8)

If yes, prove it. Otherwise, correct the equation and explain your reasoning.

f) (5 points) A student who saw equation (8) claims that:

arg min
θM ,θD

L̂(θM ,θD) = arg min
θM ,θD

L(θM ,θD) (9)

where L̂(θM ,θD) is defined as:

L̂(θM ,θD) = L(θM ,θD)−H(S) (10)

Is the student claim True/False? Please explain/justify your answer.

g) (5 points) Please explain the contribution/meaning of minimizing the first loss component of L̂(θM ,θD), namely −IθM
(X;Y ),

and the second loss component of L̂(θM ,θD), namely Ey{DKL (pθM
(x|y)‖p̃θD

(x|y))}, to the overall communication system.

3) Polar compressor (32 Points): For a positive integer N , let n = 2N and consider the invertible matrix Pn ∈ F
n×n
2 defined by:

Pn =

[

1 0
1 1

]⊗N

.

Further, consider Zn = (Z1, . . . , Zn) ∼ Bern(p)n where p ∈ (0, 0.5), and let Wn = Zn · Pn.

a) (4 points) For both channel coding and source coding, we do polarization. Explain briefly the difference in polarization

between channel coding and source coding.

b) (4 points) Define the rate for source coding and channel coding, and explain whether you want to maximize or minimize

those rates.

c) (6 points) Assume n = 4 and consider the entropy terms H(Wi|W
i−1) for i ∈ {1, . . . , 4}. Determine and explain which

one is the highest, and calculate this specific entropy term explicitly in terms of p.

d) (6 points) Define the set Sτ as follows:

Sτ = {i ∈ {1, . . . , 4} | H(Wi|W
i−1) ≥ τ}.

For τ̂ = −E[log2(PW1
)], write explicitly the set Sτ̂ . Explain your result.

e) (6 points) Consider z4 = [1, 0, 1, 1] and the set Sτ̂ that you found in the previous item. What is the output of the encoder?

f) (6 points) This time let n = 2, and assume that Z1 ∼ Bern(p1) and Z2 ∼ Bern(p2) are sampled conditioned on Z1+Z2 = a

(for a ∈ F2). Let b(p1, p2, a) denote the probability of Z2 being 1 conditioned on Z1 + Z2 = a. Find b(p1, p2, a) for both

a = 0 and a = 1.

Good Luck!


