Final Exam - Moed B

Total time for the exam: 3 hours!
Please copy the following sentence and sign it: " I am respecting the rules of the exam: Signature: \qquad $"$

Important: For True / False questions, copy the statement to your notebook and write clearly true or false. You should prove the statement if true, or disprove it, e.g. by providing a counter-example, otherwise.

1) Transfer Entropy ($\mathbf{3 6}$ Points): Define the Transfer Entropy

$$
\begin{equation*}
\mathrm{TE}_{\mathcal{X} \rightarrow \mathcal{Y}}^{(k)}(t)=I\left(Y_{t} ; X_{t-1}^{(k)} \mid Y_{t-1}^{(k)}\right), \tag{1}
\end{equation*}
$$

where $X_{t}^{(k)}:=\left(X_{t}, X_{t-1}, \ldots, X_{t-k+1}\right)$ is a notation for length- k history of a variable X up to time t.
Let $\left\{X_{t}\right\}$ and $\left\{Y_{t}\right\}$ be stationary and first-order Markov processes taking values from the binary alphabet:

- Process $\left\{X_{t}\right\}$ has a deterministic transitions from 0 to 1 or 1 to 0 each time step, i.e.

$$
\begin{equation*}
P\left(X_{t} \mid Y^{t-1}, X^{t-1}\right)=P\left(X_{t} \mid X_{t-1}\right), \quad P\left(X_{t}=x \mid X_{t-1}=x \oplus 1\right)=1 \tag{2}
\end{equation*}
$$

where $P\left(X_{0}\right) \sim \operatorname{Bern}\left(\frac{1}{2}\right)$.

- Process $\left\{Y_{t}\right\}$ is a noisy observation of the last time step of $\left\{X_{t}\right\}$. Assume $\alpha \neq \frac{1}{2}$ and $0<\alpha<1$,

$$
P\left(Y_{t} \mid Y^{t-1}, X^{t-1}\right)=P\left(Y_{t} \mid X_{t-1}\right), \quad P\left(Y_{t}=y \mid X_{t-1}=x\right)= \begin{cases}1-\alpha & \text { if } y=x \tag{3}\\ \alpha & \text { if } y \neq x\end{cases}
$$

Reminder: A stochastic process $\left\{X_{t}\right\}$ is said to be stationary if for every t_{1}, t_{2} and h, the joint probability distribution function $P\left(X_{t_{1}}, X_{t_{1}+1}, \ldots, X_{t_{1}+h}\right)$ is equal to $P\left(X_{t_{2}}, X_{t_{2}+1}, \ldots, X_{t_{2}+h}\right)$, i.e., the joint probability distribution is invariant under time shifts.
a) ($\mathbf{8}$ points) True / False The described joint process $\left\{X_{t}, Y_{t}\right\}$ is stationary. Explain your answer.
b) (6 points) True / False $P\left(Y_{t}=y, X_{t-1}=x\right) \neq P\left(X_{t}=x, Y_{t-1}=y\right)$.
c) (6 points) Calculate the Mutual Information between Y_{t} and X_{t-1}, i.e. $I\left(Y_{t} ; X_{t-1}\right)$.

Hint: Consider to use the fact that $Y_{t}=X_{t-1} \oplus Z_{t-1}$, where $\left\{Z_{t}\right\}$ are i.i.d. $\operatorname{Bern}(\alpha)$.
d) (6 points) True / False $I\left(Y_{t} ; X_{t-1}\right)=I\left(X_{t} ; Y_{t-1}\right)$.
e) (6 points) Show that the Transfer Entropy for $X \rightarrow Y$ with lag $k=1$ is non-zero, i.e., $\operatorname{TE}_{\mathcal{X} \rightarrow \mathcal{Y}}^{(1)}(t)=I\left(Y_{t} ; X_{t-1} \mid Y_{t-1}\right)>0$. Hint: Utilize the relation $Y_{t}=X_{t-1} \oplus Z_{t-1}$, and the fact that if $Z_{1} \sim \operatorname{Bern}(\alpha)$ and $Z_{2} \sim \operatorname{Bern}(\beta)$, then $Z_{1} \oplus Z_{2} \sim$ $\operatorname{Bern}(\alpha-2 \alpha \beta+\beta)$.
f) (4 points) Calculate the Transfer Entropy for $Y \rightarrow X$ with lag $k=1$, i.e., $\mathrm{TE}_{\mathcal{Y} \rightarrow \mathcal{X}}^{(1)}=I\left(X_{t} ; Y_{t-1} \mid X_{t-1}\right)$.
2) ML algorithms (36 Points): Figure 1 shows the end-to-end communication system considered in this question. This system takes as input a bit sequence denoted by \boldsymbol{b}, which is then mapped onto symbols, $\mathbf{s} \in \mathcal{S}$. The sequence of symbols is fed into a symbol modulator that maps each symbol into a constellation point $x \in \mathbb{C}$. Both the modulator and demodulator are implemented with neural networks, hence they are learnable with trainable parameters $\boldsymbol{\theta}_{M}$ and $\boldsymbol{\theta}_{D}$, respectively. The demodulator maps each received sample $y \in \mathbb{C}$ to a probability vector $\tilde{p}_{\boldsymbol{\theta}_{D}}(s \mid y)$ over the set of symbols \mathcal{S}, as illustrated in Fig 1 Finally, the sent bits are reconstructed from $\tilde{p}_{\boldsymbol{\theta}_{D}}(s \mid y)$ by the symbols-to-bits mapper. Let us denote by $p_{\boldsymbol{\theta}_{M}}(s \mid y)$ the distribution induced by the system up to the point of the output channel (without the demodulator), which depends on the modulator parameters $\boldsymbol{\theta}_{M}$. We would like to approximate the true posterior distribution $p_{\boldsymbol{\theta}_{M}}(s \mid y)$ with the mapping defined by the demodulator $\tilde{p}_{\boldsymbol{\theta}_{D}}(s \mid y)$. Given that the demodulator performs a classification task, the categorical cross-entropy is used as a loss function for training:

$$
\begin{equation*}
\mathcal{L}^{*}\left(\boldsymbol{\theta}_{M}, \boldsymbol{\theta}_{D}\right) \triangleq \mathbb{E}_{S, Y}\left\{-\log \left(\tilde{p}_{\boldsymbol{\theta}_{D}}(S \mid Y)\right)\right\} \tag{4}
\end{equation*}
$$

We assume that each symbol $\mathbf{s} \in \mathcal{S}$ is uniquely mapped to a constellation point $x \in \mathbb{C}$ (1:1 mapping), allowing us to replace s with x in expressions.

Fig. 1: Trainable end-to-end communication system. Trainable components are highlighted.
a) (5 points) In our system, $p_{\boldsymbol{\theta}_{M}}(x)$ represents the true distribution of x, and note that it depends on the modulator parameters, ${ }^{2}$ $\boldsymbol{\theta}_{M}$. The entropy of X under the distribution parameterized by $\boldsymbol{\theta}_{M}$ is:

$$
\begin{equation*}
H_{\boldsymbol{\theta}_{M}}(X)=-\sum_{x} p_{\boldsymbol{\theta}_{M}}(x) \log \left(p_{\boldsymbol{\theta}_{M}}(x)\right) \tag{5}
\end{equation*}
$$

True/False: $H_{\boldsymbol{\theta}_{M}}(X)=H(S)$? Explain why.
b) ($\mathbf{5}$ points) Given a sequence of i.i.d. samples s_{i} and y_{i} over a long period of time, for $i=1,2,3, \ldots$, how can you compute $\mathcal{L}^{*}\left(\boldsymbol{\theta}_{M}, \boldsymbol{\theta}_{D}\right) ?$
c) ($\mathbf{5}$ points) Recall the $1: 1$ mapping between s to x. Let:

$$
\begin{equation*}
\mathcal{L}\left(\boldsymbol{\theta}_{M}, \boldsymbol{\theta}_{D}\right) \triangleq \mathbb{E}_{Y}\left\{H\left[p_{\boldsymbol{\theta}_{M}}(x \mid y), \tilde{p}_{\boldsymbol{\theta}_{D}}(x \mid y)\right]\right\} \tag{6}
\end{equation*}
$$

True/False $\mathcal{L}\left(\boldsymbol{\theta}_{M}, \boldsymbol{\theta}_{D}\right)$ equals $\mathcal{L}^{*}\left(\boldsymbol{\theta}_{M}, \boldsymbol{\theta}_{D}\right)$, where $\mathcal{L}\left(\boldsymbol{\theta}_{M}, \boldsymbol{\theta}_{D}\right)$ is defined in (6), and $\mathcal{L}^{*}\left(\boldsymbol{\theta}_{M}, \boldsymbol{\theta}_{D}\right)$ is defined in (4). If yes, prove it. Otherwise, correct the equation, and explain your reasoning.
d) ($\mathbf{5}$ points) True/False The loss function, $\mathcal{L}\left(\boldsymbol{\theta}_{M}, \boldsymbol{\theta}_{D}\right)$, as defined in (6), satisfies the following equality:

$$
\begin{equation*}
\mathcal{L}\left(\boldsymbol{\theta}_{M}, \boldsymbol{\theta}_{D}\right)=-\sum_{x} \sum_{y} p_{\boldsymbol{\theta}_{M}}(x) p_{\boldsymbol{\theta}_{M}}(y \mid x) \log \left(\tilde{p}_{\boldsymbol{\theta}_{D}}(x \mid y)\right) \tag{7}
\end{equation*}
$$

If yes, explain why. If no, provide the correct expression.
e) (6 points) True/False The loss function can be expressed as the following equation:

$$
\begin{equation*}
\mathcal{L}\left(\boldsymbol{\theta}_{M}, \boldsymbol{\theta}_{D}\right)=H(S)-I_{\boldsymbol{\theta}_{M}}(X ; Y)+\mathbb{E}_{Y}\left\{D_{K L}\left(p_{\boldsymbol{\theta}_{M}}(x \mid y) \| \tilde{p}_{\boldsymbol{\theta}_{D}}(x \mid y)\right)\right\} . \tag{8}
\end{equation*}
$$

If yes, prove it. Otherwise, correct the equation and explain your reasoning.
f) (5 points) A student who saw equation (8) claims that:

$$
\begin{equation*}
\arg \min _{\boldsymbol{\theta}_{M}, \boldsymbol{\theta}_{D}} \hat{\mathcal{L}}\left(\boldsymbol{\theta}_{M}, \boldsymbol{\theta}_{D}\right)=\arg \min _{\boldsymbol{\theta}_{M}, \boldsymbol{\theta}_{D}} \mathcal{L}\left(\boldsymbol{\theta}_{M}, \boldsymbol{\theta}_{D}\right) \tag{9}
\end{equation*}
$$

where $\hat{\mathcal{L}}\left(\boldsymbol{\theta}_{M}, \boldsymbol{\theta}_{D}\right)$ is defined as:

$$
\begin{equation*}
\hat{\mathcal{L}}\left(\boldsymbol{\theta}_{M}, \boldsymbol{\theta}_{D}\right)=\mathcal{L}\left(\boldsymbol{\theta}_{M}, \boldsymbol{\theta}_{D}\right)-H(S) \tag{10}
\end{equation*}
$$

Is the student claim True/False? Please explain/justify your answer.
g) (5 points) Please explain the contribution/meaning of minimizing the first loss component of $\hat{\mathcal{L}}\left(\boldsymbol{\theta}_{M}, \boldsymbol{\theta}_{D}\right)$, namely $-I_{\boldsymbol{\theta}_{M}}(X ; Y)$, and the second loss component of $\hat{\mathcal{L}}\left(\boldsymbol{\theta}_{M}, \boldsymbol{\theta}_{D}\right)$, namely $\mathbb{E}_{y}\left\{D_{K L}\left(p_{\boldsymbol{\theta}_{M}}(x \mid y) \| \tilde{p}_{\boldsymbol{\theta}_{D}}(x \mid y)\right)\right\}$, to the overall communication system.
3) Polar compressor (32 Points): For a positive integer N, let $n=2^{N}$ and consider the invertible matrix $P_{n} \in \mathbb{F}_{2}^{n \times n}$ defined by:

$$
P_{n}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]^{\otimes N}
$$

Further, consider $Z^{n}=\left(Z_{1}, \ldots, Z_{n}\right) \sim \operatorname{Bern}(p)^{n}$ where $p \in(0,0.5)$, and let $W^{n}=Z^{n} \cdot P_{n}$.
a) (4 points) For both channel coding and source coding, we do polarization. Explain briefly the difference in polarization between channel coding and source coding.
b) (4 points) Define the rate for source coding and channel coding, and explain whether you want to maximize or minimize those rates.
c) (6 points) Assume $n=4$ and consider the entropy terms $H\left(W_{i} \mid W^{i-1}\right)$ for $i \in\{1, \ldots, 4\}$. Determine and explain which one is the highest, and calculate this specific entropy term explicitly in terms of p.
d) (6 points) Define the set S_{τ} as follows:

$$
S_{\tau}=\left\{i \in\{1, \ldots, 4\} \mid H\left(W_{i} \mid W^{i-1}\right) \geq \tau\right\}
$$

For $\hat{\tau}=-\mathbb{E}\left[\log _{2}\left(P_{W_{1}}\right)\right]$, write explicitly the set $S_{\hat{\tau}}$. Explain your result.
e) (6 points) Consider $z^{4}=[1,0,1,1]$ and the set $S_{\hat{\tau}}$ that you found in the previous item. What is the output of the encoder?
f) (6 points) This time let $n=2$, and assume that $Z_{1} \sim \operatorname{Bern}\left(p_{1}\right)$ and $Z_{2} \sim \operatorname{Bern}\left(p_{2}\right)$ are sampled conditioned on $Z_{1}+Z_{2}=a$ (for $a \in \mathbb{F}_{2}$). Let $b\left(p_{1}, p_{2}, a\right)$ denote the probability of Z_{2} being 1 conditioned on $Z_{1}+Z_{2}=a$. Find $b\left(p_{1}, p_{2}, a\right)$ for both $a=0$ and $a=1$.

