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Introduction to Information Theory and Machine Learning August 2th, 2022.
(Prof. Permuter Haim, Mr. Bashar Huleihel and Mr. Omer Luxembourg)

Final Exam - Moed B
Total time for the exam: 3 hours!

Please copy the following sentence and sign it: “ I am respecting the rules of the exam: Signature: ”

Important: For True / False questions, copy the statement to your notebook and write clearly true or false. You should prove the
statement if true, or disprove it, e.g. by providing a counter-example, otherwise.

1) Imbalanced Data and Backpropagation (32 Points): You’re trying to classify RGB images if giraffe present (1) and giraffe
absent (0) using a deep neural network. Unfortunately, your data set is imbalanced, and consist of:
• 2000 images with a giraffe
• 200 images with no giraffe

a) (4 points) To address the imbalance problem, we would like to oversample our data by using augmentations, while avoiding
having the same example twice in our dataset. Suggest two data augmentation techniques you could use to help address the
class imbalance problem.
Solution:
Adding white noise, image reflection, cropping, rotation.

b) (4 points) Instead of data augmentation, you want to experiment with other techniques. Here’s the architecture of your network:

z1 = W1x
(i) + b1,

a1 = ReLU(z1),

z2 = W2a1 + b2,

ŷ(i) = σ(z2),

L(i) = α · y(i) · log(ŷ(i)) + β · (1− y(i)) · log(1− ŷ(i)),

J = − 1

m

m∑
i=1

L(i),

where ŷ(i) ∈ R, y(i) ∈ R, x(i) ∈ RDx×1, W1 ∈ RDa1×Dx , W2 ∈ R1×Da1 . Note that m is the size of the dataset and that the
RGB images are flattened into vectors of length Dx before being fed into the network. What are the dimensions of b1 and
b2?
Solution:
b1 ∈ RDa1×1, b2 ∈ R1×1.

c) (4 points) Explain why α and β are useful for the imbalance data problem?
Solution:
Weighting how much each class contributes to the loss function can help gradient descent because the network will take
larger steps when learning from instances of the underrepresented class

d) (6 points) What are a reasonable values for the pair (α, β)? Provide specific values for these weightings.
Hint: if α = 1, β = 1 we get the original Binary Cross-Entropy loss function. Think why this function isn’t right for the
question’s scenario.
Solution:
α = 0.1, β = 1.0. Roughly, the ratio should be somewhere near β = 10 · α but not ridiculously large or small.

e) (4 points) You decide to add L2 regularization to this model. Write your new cost function.
Solution:

J = −
∑
i

(
β · (1− y(i)) · log(1− ŷ(i)) + α · y(i) · log(ŷ(i))

)
+ ||W2||22 + ||W1||22 + b21 + b22.

f) (4 points) Using this new cost function, write down the update rule for W1 as a function of ∂J
∂W1

and W1.
Hint: assume you are using gradient descent. Use η as your learning rate.
Solution:

W ′
1 = W1 − η ·

(
∂J

∂W1
+ 2 ·W1

)
.

Note: can be with or without factor 2, according to the denominator in the regularization formula.
g) (6 points) Suppose you use L1 regularization instead. How would you expect the weights learned using L1 regularization to

differ from these learned using L2 regularization?
Solution:
The weights obtained by L1 regularization are expected to be more sparse (more zeros than L2).
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2) Probability mass function estimation (34 Points): In this question, we will develop an algorithm for probability mass function

(PMF) estimation based on a given sample set. Let X ∼ PX , Y ∼ PY and denote the joint PMF of (X,Y ) by PXY . Further,
let UX be the PMF of the uniform discrete probability measure over the alphabet of X , i.e. UX(x) = 1

X for any x ∈ X .
a) (5 points) Prove the following equality:

H(X,Y ) = H(PXY , UXY )−DKL(PXY ||UXY ),

where H(PXY , UXY ) denote the cross-entropy between PXY and UXY .
Solution:
Consider the following chain of equalities:

H(X,Y ) = EPXY

[
log

1

PXY

]
= EPXY

[
log

UXY

PXY UXY

]
= EPXY

[
log

1

UXY

]
− EPXY

[
log

PXY

UXY

]
= H(PXY , UXY )−DKL(PXY ||UXY ).

b) (5 points) Express H(PXY , UXY ) as function of the alphabets X and Y .
Solution:

H(PXY , UXY ) = EPXY

[
log

1

UXY

]
=

∑
x,y∈X×Y

PXY (x, y) log
1

UXY (x, y)

=
∑

x,y∈X×Y

PXY (x, y) log |X ||Y|

= log |X ||Y|
∑

x,y∈X×Y

PXY (x, y)

= log |X ||Y|.

c) (8 points) Propose a neural network based algorithm to estimate H(X,Y ) from a sample set {(xi, yi)}ni=1 ∼ PXY . Denote
the estimator by Ĥn(X,Y ), and provide a block diagram of your proposed algorithm.
Solution:
Following the previous item, we only need to estimate the KL divergence. In class we studied about the Donsker-Vardhan
representation. We’ll replace the expectations with empirical means. The objective of the KL divergence is of the form:

D̂
(n)
KL(X,Y ) = sup

θXY ∈ΘXY

1

n

n∑
i=1

TθXY
(xi, yi)− log

(
1

n

n∑
i=1

eTθXY
(x̃i,ỹi)

)
,

where (x̃i, ỹi) are drawn uniformly over (X ,Y). After achieving the supermization objective via a neural network TθXY
with

parameters θXY , we can achieve the entropy,

Ĥn(X,Y ) = log |X ||Y| − D̂
(n)
KL(X,Y ).

Fig. 1: Donsker-Vardhan Block Diagram.
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d) (8 points) For sufficient large n, is your proposed algorithm provides a lower / upper bound on H(X,Y )? Theoretically,

when will the algorithm achieve equality?
Solution:
The proposed algorithm provides an upper bound of H(X,Y ). Specifically, the Donsker-Vardhan representation provides a
lower bound on D̂

(n)
KL(X,Y ) and the cross entropy between PXY and UXY is a positive constant. From the lecture, the

algorithm will achieve equality when,

T ∗
θXY

(x, y) = log

(
PXY (x, y)

UXY (x, y)

)
= log (|X ||Y| · PXY (x, y)) . (1)

e) (8 points) Assume that, for a sufficient large n, your suggested algorithm is converged. Suggest how to estimate PXY based
on the previous items.
Solution:
From the last section, after training our neural network TθXY

, we can estimate the probability PXY (x, y) as follows,

P̂XY (x, y) =
1

|X ||Y|
eT

∗
θXY

(x,y),

where T ∗
θXY

(x, y) is given in Eq. (1).

3) Huffman codes (34 Points): Consider a random variable X which takes 6 values {A,B,C,D,E, F} with probabilities
(0.5, 0.25, 0.1, 0.05, 0.05, 0.05) respectively.

a) (5 points) Construct a binary Huffman code for this random variable. What is the average length of the code?
Solution:
The mapping constructed by Huffman is A → 0, B → 10, C → 1100, D → 1101, E → 1110, and F → 1111.
The average length of this code is

LH = 1 · 0.5 + 2 · 0.25 + 4 · (0.1 + 0.05 + 0.05 + 0.05)

= 2.

The entropy H(X) in this case is 1.98 bits.
b) (5 points) Construct a quaternary Huffman code for this random variable, i.e., a code over the alphabet of four symbols (call

them a, b, c, and d). What is the average length of this code?
Solution:
The mapping in this case is A → a, B → b, C → c, D → da, E → db, and F → dc.
The average length of this code is

LQ = 1 · 0.85 + 2 · 0.15
= 1.15.

c) (4 points) One way to construct a binary code for a random variable is to start with a quaternary code, and convert the
symbols into binary using the mapping a → 00, b → 01, c → 10, and d → 11. What is the average length of the binary code
for the above random variable constructed by this process?
Solution:
The code constructed by the above process is A → 00, B → 01, C → 11, D → 1000, E → 1001, and F → 1010. The
average length of the code is

LQB = 2 · 0.85 + 4 · 0.15 = 2.3 bits.

For any variable X , let LH be the average length of the binary Huffman code for the random variable, and let LQB be the
average length code constructed by first building a quaternary Huffman code and converting it to binary.

d) (6 points) True/False: The inequality LH ≤ LQB always holds.
Solution:
True. Note that the binary code constructed from the quaternary code is also instantaneous. Therefore, its average length
cannot be better than the average length of the best instantaneous code, i.e., the Huffman code. Hence, the lower bound holds.

e) (7 points) Show that LQB < LH + 2.
Hint: Consider to use the fact that the average length of a quaternary Huffman code satisfies LQ < H2(X)

2 + 1.
Solution:
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It is easy to see that LQB = 2LQ, since each symbol in the quaternary code is converted into two bits. Accordingly,

LQB = 2LQ

(a)
< 2 ·

(
H2(X)

2
+ 1

)
= H2(X) + 2,

where (a) follows from the hint. Combining this with the fact that H2(X) ≤ LH , we obtain LQB < LH + 2.
f) (7 points) Give an example where the code constructed by converting an optimal quaternary code is also the optimal binary

code, i.e., example for which LH = LQB .
Solution:
Consider a random variable that takes on four equiprobable values. Then, the quaternary Huffman code for this is 1 quaternary
symbol for each source symbol, with average length 1 quaternary symbol. The average length LQB for this code is 2 bits.
The Huffman code for this case is also eaisly seen to assign 2 bit codewords to each symbol, and therefore for this case,
LH = LQB .

Good Luck!


