Final Exam - Moed A

Total time for the exam: 3 hours!
Please copy the following sentence and sign it: " I am respecting the rules of the exam: Signature: \qquad $"$

Important: For True / False questions, copy the statement to your notebook and write clearly true or false. You should prove the statement if true, or disprove it, e.g. by providing a counter-example, otherwise.

1) Uncertainty about true distribution (24 Points): Consider a source U with alphabet $\mathcal{U}=\left\{a_{1}, \ldots a_{m}\right\}$ and suppose we know that the true distribution of U is either P_{1} or P_{2}, but we are not sure which.
a) (8 points) True/False: There is a prefix code where the length of the codeword associated to a_{i} is $l_{i}=\left\lceil\log _{2}\left(\frac{2}{P_{1}\left(a_{i}\right)+P_{2}\left(a_{i}\right)}\right)\right\rceil$.

Solution:

Let $l_{i}=\left\lceil\log _{2}\left(\frac{2}{P_{1}\left(a_{i}\right)+P_{2}\left(a_{i}\right)}\right)\right\rceil$, and compute the Kraft sum:

$$
\begin{aligned}
\sum_{m=1}^{M} 2^{-l_{i}} & \leq \sum_{m=1}^{M} 2^{-\log _{2}\left(\frac{2}{P_{1}\left(a_{i}\right)+P_{2}\left(a_{i}\right)}\right)} \\
& =\sum_{m=1}^{M} \frac{P_{1}\left(a_{i}\right)+P_{2}\left(a_{i}\right)}{2} \\
& =1
\end{aligned}
$$

Accordingly, the Kraft sum at most to 1 , and therefore, there exists a prefix-free code where the length of the codeword associated to a_{i} is l_{i}.
b) (8 points) Show that the average (computed using the true distribution) length \bar{l} of the code constructed in item (a) satisfies $H(U) \leq \bar{l} \leq H(U)+2$.

Solution:

Since the constructed code in item (a) is a prefix code, then $l \geq H(U)$. To prove the upper bound, let P^{*} be the true distribution (which is either P_{1} or P_{2}). Then, clearly, the inequality $P^{*}\left(a_{i}\right) \leq P_{1}\left(a_{i}\right)+P_{2}\left(a_{i}\right)$ holds for all $1 \leq i \leq M$. Accordingly, we get:

$$
\begin{aligned}
\bar{l} & =\sum_{m=1}^{M} P^{*}\left(a_{i}\right) l_{i} \\
& =\sum_{m=1}^{M} P^{*}\left(a_{i}\right)\left[\log _{2}\left(\frac{2}{P_{1}\left(a_{i}\right)+P_{2}\left(a_{i}\right)}\right)\right] \\
& =\sum_{m=1}^{M} P^{*}\left(a_{i}\right)\left(1+\log _{2}\left(\frac{2}{P_{1}\left(a_{i}\right)+P_{2}\left(a_{i}\right)}\right)\right) \\
& =2+\sum_{m=1}^{M} P^{*}\left(a_{i}\right) \log _{2}\left(\frac{1}{P_{1}\left(a_{i}\right)+P_{2}\left(a_{i}\right)}\right) \\
& \leq 2+\sum_{m=1}^{M} P^{*}\left(a_{i}\right) \log _{2}\left(\frac{1}{P^{*}\left(a_{i}\right)}\right) \\
& =2+H(U) .
\end{aligned}
$$

c) (8 points) Now assume that the true distribution of U is one of k distributions P_{1}, \ldots, P_{k}, but we don't know which. Show that there exists a prefix code satisfying $H(U) \leq \bar{l} \leq H(U)+\log _{2}(k)+1$.

Solution:

Solution:
Now let $l_{i}=\left\lceil\log _{2}\left(\frac{k}{P_{1}\left(a_{i}\right)+\cdots+P_{k}\left(a_{i}\right)}\right)\right\rceil$, and let us compute the Kraft sum for this scenario:

$$
\begin{aligned}
\sum_{m=1}^{M} 2^{-l_{i}} & \leq \sum_{m=1}^{M} 2^{-\log _{2}\left(\frac{k}{P_{1}\left(a_{i}\right)+\cdots+P_{k}\left(a_{i}\right)}\right)} \\
& =\sum_{m=1}^{M} \frac{P_{1}\left(a_{i}\right)+\cdots+P_{k}\left(a_{i}\right)}{k} \\
& =1
\end{aligned}
$$

Thus, the code is a prefix code which implies that $\bar{l} \geq H(U)$. Here too, let P^{*} denote the true distribution. Therefore, ${ }^{2}$ $P^{*}\left(a_{i}\right) \leq P_{1}\left(a_{i}\right)+\cdots+P_{k}\left(a_{i}\right)$ for all $1 \leq i \leq M$. Following the same proof steps as for the previous item, it is easy to show that:

$$
\bar{l} \leq 1+\log _{2}(k)+H(U)
$$

2) GMM ($\mathbf{1 8}$ points): We will derive the EM update rules for a univariate Gaussian Mixture Model with two mixture components. The mean μ will be shared between the two mixture components, but each component will have its own standard deviation σ_{k}. The model will be defined as follows:

$$
\begin{array}{r}
z \sim \operatorname{Bernoulli}(\theta), \\
p(x \mid z=k) \text { is } \mathcal{N}\left(\mu, \sigma_{k}\right)
\end{array}
$$

a) (4 points) Write the density defined by this model (i.e. the probability of x, with z marginalized out)

Solution:

$$
p(x)=\theta \mathcal{N}\left(x ; \mu, \sigma_{1}\right)+(1-\theta) \mathcal{N}\left(x ; \mu, \sigma_{0}\right)
$$

b) (4 points) E-step - Compute the posterior probability $w^{(i)}=\operatorname{Pr}\left(z^{(i)}=1 \mid x^{(i)}\right)$

Solution:

$$
w^{(i)}=\frac{\theta \mathcal{N}\left(x ; \mu, \sigma_{1}\right)}{\theta \mathcal{N}\left(x ; \mu, \sigma_{1}\right)+(1-\theta) \mathcal{N}\left(x ; \mu, \sigma_{0}\right)}
$$

c) (5 points) M-Step - Calculate the update rule for μ (for a fixed σ_{k})
d) (5 points) M-Step - Calculate the update rule for σ_{k} (for a fixed μ)

Solution:

At each M-step we optimize the following:

$$
\begin{aligned}
\mathcal{L}\left(\mu, \sigma_{0}, \sigma_{1}, \theta\right) & =\sum_{i=1}^{N} w^{(i)} \log \left(\mathcal{N}\left(x(i) \mid \mu, \sigma_{1}\right)\right)+w^{(i)} \log \theta \\
& +\left(1-w^{(i)}\right) \log \left(\mathcal{N}\left(x(i) \mid \mu, \sigma_{0}\right)\right)+\left(1-w^{(i)}\right) \log (1-\theta) \\
\frac{\partial \mathcal{L}}{\partial \mu}=0 & \Rightarrow \sum_{i}^{N}\left(w^{(i)} \frac{x^{(i)}-\mu}{\sigma_{1}^{2}}+\left(1-w^{(i)}\right) \frac{x^{(i)}-\mu}{\sigma_{0}^{2}}=0\right. \\
& \Rightarrow \sum_{i}^{N}\left(x^{(i)}-\mu\right)\left(\frac{w^{(i)}}{\sigma_{1}^{2}}+\frac{1-w^{(i)}}{\sigma_{0}^{2}}\right)=0 \\
& \Rightarrow \sum_{i}^{N}\left(x^{(i)}-\mu\right)\left(\sigma_{0}^{2} w^{(i)}+\sigma_{1}^{2}\left(1-w^{(i)}\right)\right)=0
\end{aligned}
$$

Thus you get:

$$
\begin{aligned}
\mu & =\frac{\sum_{i}^{N} x^{(i)}\left(\sigma_{0}^{2} w^{(i)}+\sigma_{1}^{2}\left(1-w^{(i)}\right)\right)}{\sum_{i}^{N}\left(\sigma_{0}^{2} w^{(i)}+\sigma_{1}^{2}\left(1-w^{(i)}\right)\right)} \\
\frac{\partial \mathcal{L}}{\sigma_{k}^{2}}=0 & \Rightarrow \sigma_{k}^{2}=\frac{\sum_{i=1}^{N} w^{(i)}\left(x^{(i)}-\mu\right)^{2}}{\sum_{i=1}^{N} w^{(i)}}
\end{aligned}
$$

3) Linear Regression (26 Points): You are tasked with solving a fitting a linear regression model on a set of m datapoints where each feature has some dimensionality d. Your dataset can be described as the set $\left\{x^{(i)}, y^{(i)}\right\}_{i=1}^{m}$, where $x^{(i)} \in \mathbb{R}^{d}, y^{(i)} \in \mathbb{R}$. You initially decide to optimize the loss objective:

$$
J=\frac{1}{m} \sum_{i=1}^{m}\left(y^{(i)}-x^{(i)^{T}} \theta\right)^{2},
$$

using Batch Gradient Descent - in which each step involves calculations over the entire training set. Here, $\theta \in \mathbb{R}^{d}$ is your 3^{3} weight vector. Assume you are ignoring a bias term for this problem.
a) (4 points) Write each update of the batch gradient descent, $\frac{\partial J}{\partial \theta}$ in vectorized form. Your solution should be a single vector (no summation terms) in terms of the matrix X and vectors Y and θ, where

$$
X=\left[\begin{array}{c}
x^{(1)^{T}} \\
\vdots \\
x^{(m)^{T}}
\end{array}\right], Y=\left[\begin{array}{c}
y^{(1)} \\
\vdots \\
y^{(m)}
\end{array}\right]
$$

Solution:

Final solution is:

$$
\frac{\partial J}{\partial \theta}=\frac{2}{m} X^{T}(X \theta-Y)
$$

Two common approaches are "derive, then vectorize" and "vectorize, then derive". Both get full credit. With the first approach.

$$
\begin{aligned}
& \frac{\partial J}{\partial \theta}=\frac{2}{m} \sum_{i}\left(x^{(i)^{T}} \theta-y^{(i)}\right) x^{(i)} \text { - derivative step } \\
& \quad=\frac{\partial J}{\partial \theta}=\frac{2}{m} X^{T}(X \theta-Y)-\text { vectorization step }
\end{aligned}
$$

b) (7 points) A coworker suggests you augment your dataset by adding Gaussian noise to your features. Specifically, you would be adding zero-mean, Gaussian noise of known vairance σ^{2} from the distribution

$$
\mathcal{N}\left(0, \sigma^{2} I\right)
$$

where $I \in \mathbb{R}^{d \times d}, \sigma \in \mathbb{R}$. This modifies your original objective to:

$$
J_{*}=\frac{1}{m} \sum_{i=1}^{m}\left(y^{(i)}-\left(x^{(i)}-\delta^{(i)}\right)^{T} \theta\right)^{2}
$$

where $\delta^{(i)}$ are i.i.d. noise vectors, $\delta^{(i)} \in \mathbb{R}^{d}$ and $\delta^{(i)} \sim \mathcal{N}\left(0, \sigma^{2} I\right)$.
Express the expectation of the modified objective J_{*} over the Gaussian noise, $\mathbb{E}_{\delta \sim \mathcal{N}}\left[J_{*}\right]$, as a function of the original objective J added to a term independent of your data. Your answer should be in the form

$$
\mathbb{E}_{\delta \sim \mathcal{N}}\left[J_{*}\right]=J+C,
$$

where C is independent of points in $\left\{x^{(i)}, y^{(i)}\right\}_{i=1}^{m}$.
Hint: For a Gaussian random vector δ with zero mean, and convariance matrix $\sigma^{2} I$

$$
\mathbb{E}_{\delta \sim \mathcal{N}}\left[\delta \delta^{T}\right]=\sigma^{2} I, \quad \mathbb{E}_{\delta \sim \mathcal{N}}[\delta]=0
$$

Solution:

$$
\begin{aligned}
& J_{*}=\frac{1}{m} \sum_{i=1}^{m}\left(y^{(i)}-\left(x^{(i)}-\delta^{(i)}\right)^{T} \theta\right)^{2} \\
&\left.=\frac{1}{m} \sum_{i=1}^{m}\left(\left(y^{(i)}-x^{(i)}\right)-\delta^{(i)}\right)^{T} \theta\right)^{2} \\
&=\frac{1}{m} \sum_{i=1}^{m}\left(\left(y^{(i)}-x^{(i)}\right)^{2}-2\left(y^{(i)}-x^{(i)}\right)\left(\delta^{(i) T} \theta\right)+\left(\delta^{(i) T} \theta\right)^{2}\right) \\
&=J+\frac{1}{m} \sum_{i=1}^{m}\left(-2\left(y^{(i)}-x^{(i)}\right)\left(\delta^{(i) T} \theta\right)+\left(\delta^{(i) T} \theta\right)^{2}\right) \\
& \mathbb{E}_{\delta \sim \mathcal{N}}\left[J_{*}\right]=J+\mathbb{E}_{\delta \sim \mathcal{N}}\left[\frac{1}{m} \sum_{i=1}^{m}\left(-2\left(y^{(i)}-x^{(i)}\right)\left(\delta^{(i) T} \theta\right)+\left(\delta^{(i) T} \theta\right)^{2}\right)\right]
\end{aligned}
$$

From Linearity of Expectation, we can take the expectation individually for each sample:

$$
\mathbb{E}_{\delta \sim \mathcal{N}}\left[\frac{1}{m} \sum_{i=1}^{m}-2\left(y^{(i)}-x^{(i)}\right)\left(\delta^{(i) T} \theta\right)\right]=-2\left(y^{(i)}-x^{(i)}\right) \mathbb{E}\left[\delta^{(i) T} \theta\right]=0
$$

Thus, we get:

$$
\begin{equation*}
\mathbb{E}_{\delta \sim \mathcal{N}}\left[J_{*}\right]=J+\sigma^{2}\|\theta\|_{2}^{2} \tag{1}
\end{equation*}
$$

c) (4 points) What effect would adding noise have on model overfitting/underfitting? Explain why.

Remember that the weights update rule is derived from the loss function, which is the expectation of J_{*}.

Solution:

Adding noise to the model will prevent overfiting because the model wouldn't be able to remember a specific point mapping from $x^{(i)}$ to $y^{(i)}$ due to the noise inserted to $x^{(i)}$. Alternatively, in expectation, the new objective would help regularize the model, due to the similar $L 2$ regularization term (see the answer for next question) and it is known that $L 2$ regularization method prevents overfiting.
d) (4 points) Is this method similar to a regularization method we studied in class? If so, specify the regularization method and prove it and if not, explain why?

Solution:

Yes. It is similar to L_{2} regularization, but with a scalar multiplicative σ^{2} (see equation 1 which is the λ in $L 2$ regularization method.
e) (3 points) Consider the limits $\sigma \rightarrow 0$ and $\sigma \rightarrow \infty$. What impact would these extremes in the value of σ have on model training (relative to no noise added)? Explain why.

Solution:

$\sigma \rightarrow 0$: Less regularizing/no effect.
$\sigma \rightarrow \infty$: All weights get pushed to zero / model underfits.
f) (4 points) Suggest a cost function and a noise that is related to Dropout.

Solution:

$$
J_{*}=\frac{1}{m} \sum_{i=1}^{m}\left(y^{(i)}-\left(x^{(i)} \cdot \gamma^{(i)}\right)^{T} \theta\right)^{2}
$$

where $\gamma^{(i)} \in \mathbb{R}^{d}$ are i.i.d. noise vectors. $\gamma_{j}^{(i)} \sim \operatorname{Ber}(p)$ (i.i.d.) for $j \in\{1,2, \ldots, d\}$, and the probability $1-p$ is the rate of the dropout.
4) Computable lower bounds ($\mathbf{3 2}$ Points): In this question, you will prove a simple lower bound on the capacity of a memoryless channel. Let $p(y \mid x)$ be a memoryless channel, and let $p(x)$ be a distribution on \mathcal{X}. Let $r(x \mid y)$ be an arbitrary conditional distribution on \mathcal{X} given \mathcal{Y}, i.e., for each $x \in \mathcal{X}$ and each $y \in \mathcal{Y}, r(x \mid y) \geq 0$ and $\sum_{\tilde{x} \in \mathcal{X}} r(\tilde{x} \mid y)=1$. Define the functional $F(p, r)$ as follows:

$$
F(p, r)=\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x) p(y \mid x) \log _{2}\left(\frac{r(x \mid y)}{p(x)}\right)
$$

where p in $F(p, r)$ denotes $P(x)$ and $p(y \mid x)$ is fixed thought the question. Now, for each input distribution p on \mathcal{X}, define the conditional distribution r_{p} as

$$
r_{p}(x \mid y)=\frac{p(x) p(y \mid x)}{\sum_{\tilde{x} \in \mathcal{X}} p(\tilde{x}) p(y \mid \tilde{x})}
$$

That is, r_{p} is the "true" conditional distribution of \mathcal{X} given \mathcal{Y} when p is the input distribution.
a) (8 points) True/False: For all conditional distributions r we have $F(p, r) \leq F\left(p, r_{p}\right)$.

Solution:

True. Let us show that the difference is non-negative.

$$
\begin{aligned}
F\left(p, r_{p}\right)-F(p, r) & =\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x) p(y \mid x) \log _{2}\left(\frac{r_{p}(x \mid y)}{r(x \mid y)}\right) \\
& =\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x) p(y \mid x) \log _{2}\left(\frac{p(x) p(y \mid x)}{r(x \mid y) \sum_{\tilde{x} \in \mathcal{X}} p(\tilde{x}) p(y \mid \tilde{x})}\right) \\
& =D\left(P_{1} \| P_{2}\right) \\
& \geq 0
\end{aligned}
$$

where $P_{1}(x, y)=p(x) p(y \mid x)$ and $P_{2}(x, y)=r(x \mid y) \sum_{\tilde{x} \in \mathcal{X}} p(\tilde{x}) p(y \mid \tilde{x})$.
b) (4 points) Show that $I(X ; Y)=\max _{r} F(p, r)$.

Solution:

From the previous item we can deduce that $F\left(p, r_{p}\right)=\max _{r} F(p, r)$. Further,

$$
\begin{aligned}
F\left(p, r_{p}\right) & =\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x) p(y \mid x) \log _{2}\left(\frac{r_{p}(x \mid y)}{p(x)}\right) \\
& =\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x) p(y \mid x) \log _{2}\left(\frac{p(x, y)}{p(x) p(y)}\right) \\
& =I(X ; Y),
\end{aligned}
$$

as required.
c) (8 points) True/False: The functional $F(p, r)$ is strictly concave in both p and r.

Solution:

True. We can rewrite $F(p, r)$ as follows:

$$
F(p, r)=\left(\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x) p(y \mid x) \log _{2}(r(x \mid y))\right)+\left(\sum_{x \in \mathcal{X}} p(x) \log _{2}\left(\frac{1}{p(x)}\right)\right)
$$

The first term is linear in p while the second term is strictly concave in p (the function $t \Rightarrow t \log _{2} \frac{1}{t}$ is strictly concave). Therefore, $F(p, r)$ is strictly concave in p. In addition, the first term is concave in r (the function $\log _{2}$ is strictly concave), and the second term is constant with respect to r. Therefore, $F(p, r)$ is strictly concave in r.
d) (6 points) In Algorithm 1 below, we introduce an iterative algorithm for maximizing a two-variable function. Following the previous items, suggest such an iterative algorithm to compute the capacity.

Solution:

Following the previous items, the capacity can be computed as

$$
\begin{align*}
C & =\max _{p} I(X ; Y) \tag{2}\\
& =\max _{p} \max _{r} F(p, r) . \tag{3}
\end{align*}
$$

Accordingly, in the spirit of Algorithm 1, the following algorithm can be used to compute the capacity:

```
Algorithm 1 Alternating maximization procedure
input: The function \(F(p, r)\) that is concave in both \(p\) and \(r\)
output: A global maximum of \(F(p, r)\) (capacity)
set \(p_{0}\) uniform in \(\mathcal{X}\) and solve \(r_{0}=\arg \max _{r} F\left(p_{0}, r\right)\)
set \(i=1\)
while \(F\left(p_{i}, r_{i}\right)\) not converged do
    \(p_{i}=\arg \max _{p} F\left(p, r_{i-1}\right)\)
    \(r_{i}=\arg \max _{r} F\left(p_{i-1}, r\right)\)
    compute \(F\left(p_{i}, r_{i}\right)\)
    \(i=i+1\)
end
return \(F\left(p_{i}, r_{i}\right)\)
```

Note: The Alternating maximization procedure is known to converge to optimal solution when the function $g(x, y)$ is concave in (x, y).
e) (6 points) For a given memoryless channel, let r^{*} denote the conditional distribution that should be used to obtain the capacity. Write explicitly r^{*} for the case of a binary symmetric channel with crossover probability 0.2 .

Solution:

The optimal input distribution p^{*} for a binary symmetric channel is a uniform distribution. Accordingly,

$$
\begin{aligned}
r^{*}(x \mid y) & =r_{p^{*}}(x \mid y) \\
& =\frac{p^{*}(x) p(y \mid x)}{\sum_{\tilde{x} \in \mathcal{X}} p^{*}(\tilde{x}) p(y \mid \tilde{x})}
\end{aligned}
$$

Good Luck!

