
1
Introduction to Information Theory and Machine Learning July 7th, 2022.
(Prof. Permuter Haim, Mr. Bashar Huleihel, and Mr. Omer Luxembourg)

Final Exam - Moed A
Total time for the exam: 3 hours!

Please copy the following sentence and sign it: “ I am respecting the rules of the exam: Signature: ”

Important: For True / False questions, copy the statement to your notebook and write clearly true or false. You should prove the
statement if true, or disprove it, e.g. by providing a counter-example, otherwise.

1) Uncertainty about true distribution (24 Points): Consider a source U with alphabet U = {a1, . . . am} and suppose we know
that the true distribution of U is either P1 or P2, but we are not sure which.

a) (8 points) True/False: There is a prefix code where the length of the codeword associated to ai is li =
⌈
log2

(
2

P1(ai)+P2(ai)

)⌉
.

Solution:
Let li =

⌈
log2

(
2

P1(ai)+P2(ai)

)⌉
, and compute the Kraft sum:

M∑
m=1

2−li ≤
M∑

m=1

2
− log2

(
2

P1(ai)+P2(ai)

)

=

M∑
m=1

P1(ai) + P2(ai)

2

= 1.

Accordingly, the Kraft sum at most to 1, and therefore, there exists a prefix-free code where the length of the codeword
associated to ai is li.

b) (8 points) Show that the average (computed using the true distribution) length l̄ of the code constructed in item (a) satisfies
H(U) ≤ l̄ ≤ H(U) + 2.
Solution:
Since the constructed code in item (a) is a prefix code, then l ≥ H(U). To prove the upper bound, let P ∗ be the true
distribution (which is either P1 or P2). Then, clearly, the inequality P ∗(ai) ≤ P1(ai) + P2(ai) holds for all 1 ≤ i ≤ M .
Accordingly, we get:

l̄ =

M∑
m=1

P ∗(ai)li

=

M∑
m=1

P ∗(ai)

⌈
log2

(
2

P1(ai) + P2(ai)

)⌉

=

M∑
m=1

P ∗(ai)

(
1 + log2

(
2

P1(ai) + P2(ai)

))

= 2 +

M∑
m=1

P ∗(ai) log2

(
1

P1(ai) + P2(ai)

)

≤ 2 +

M∑
m=1

P ∗(ai) log2

(
1

P ∗(ai)

)
= 2 +H(U).

c) (8 points) Now assume that the true distribution of U is one of k distributions P1, . . . , Pk, but we don’t know which. Show
that there exists a prefix code satisfying H(U) ≤ l̄ ≤ H(U) + log2(k) + 1.
Solution:
Now let li =

⌈
log2

(
k

P1(ai)+···+Pk(ai)

)⌉
, and let us compute the Kraft sum for this scenario:

M∑
m=1

2−li ≤
M∑

m=1

2
− log2

(
k

P1(ai)+···+Pk(ai)

)

=

M∑
m=1

P1(ai) + · · ·+ Pk(ai)

k

= 1.

2
Thus, the code is a prefix code which implies that l̄ ≥ H(U). Here too, let P ∗ denote the true distribution. Therefore,
P ∗(ai) ≤ P1(ai) + · · · + Pk(ai) for all 1 ≤ i ≤ M . Following the same proof steps as for the previous item, it is easy to
show that:

l̄ ≤ 1 + log2(k) +H(U).

2) GMM (18 points): We will derive the EM update rules for a univariate Gaussian Mixture Model with two mixture components.
The mean µ will be shared between the two mixture components, but each component will have its own standard deviation σk.
The model will be defined as follows:

z ∼ Bernoulli(θ),

p(x|z = k) is N (µ, σk).

a) (4 points) Write the density defined by this model (i.e. the probability of x, with z marginalized out)

Solution:

p(x) = θN (x;µ, σ1) + (1− θ)N (x;µ, σ0)

b) (4 points) E-step - Compute the posterior probability w(i) = Pr(z(i) = 1|x(i))

Solution:

w(i) =
θN (x;µ, σ1)

θN (x;µ, σ1) + (1− θ)N (x;µ, σ0)

c) (5 points) M-Step - Calculate the update rule for µ (for a fixed σk)
d) (5 points) M-Step - Calculate the update rule for σk (for a fixed µ)

Solution:

At each M-step we optimize the following:

L(µ, σ0, σ1, θ) =

N∑
i=1

w(i)log (N (x(i)|µ, σ1)) + w(i)logθ

+ (1− w(i))log (N (x(i)|µ, σ0)) + (1− w(i))log(1− θ)

∂L
∂µ

= 0 ⇒
N∑
i

(w(i)x
(i) − µ

σ2
1

+ (1− w(i))
x(i) − µ

σ2
0

= 0

⇒
N∑
i

(x(i) − µ)

(
w(i)

σ2
1

+
1− w(i)

σ2
0

)
= 0

⇒
N∑
i

(x(i) − µ)
(
σ2
0w

(i) + σ2
1(1− w(i))

)
= 0

Thus you get:

µ =

∑N
i x(i)

(
σ2
0w

(i) + σ2
1(1− w(i))

)∑N
i

(
σ2
0w

(i) + σ2
1(1− w(i))

)
∂L
σ2
k

= 0 ⇒ σ2
k =

∑N
i=1 w

(i)(x(i) − µ)2∑N
i=1 w

(i)

3) Linear Regression (26 Points): You are tasked with solving a fitting a linear regression model on a set of m datapoints where
each feature has some dimensionality d. Your dataset can be described as the set {x(i), y(i)}mi=1, where x(i) ∈ Rd, y(i) ∈ R.
You initially decide to optimize the loss objective:

J =
1

m

m∑
i=1

(y(i) − x(i)T θ)2,

3
using Batch Gradient Descent - in which each step involves calculations over the entire training set. Here, θ ∈ Rd is your
weight vector. Assume you are ignoring a bias term for this problem.

a) (4 points) Write each update of the batch gradient descent, ∂J
∂θ in vectorized form. Your solution should be a single vector

(no summation terms) in terms of the matrix X and vectors Y and θ, where

X =

x
(1)T

...
x(m)T

 , Y =

 y
(1)

...
y(m)

 .

Solution:
Final solution is:

∂J

∂θ
=

2

m
XT (Xθ − Y)

Two common approaches are “derive, then vectorize” and “vectorize, then derive”. Both get full credit. With the first approach.

∂J

∂θ
=

2

m

∑
i

(x(i)T θ − y(i))x(i) - derivative step

=
∂J

∂θ
=

2

m
XT (Xθ − Y) - vectorization step

b) (7 points) A coworker suggests you augment your dataset by adding Gaussian noise to your features. Specifically, you would
be adding zero-mean, Gaussian noise of known vairance σ2 from the distribution

N (0, σ2I),

where I ∈ Rd×d, σ ∈ R. This modifies your original objective to:

J∗ =
1

m

m∑
i=1

(y(i) − (x(i) − δ(i))T θ)2,

where δ(i) are i.i.d. noise vectors, δ(i) ∈ Rd and δ(i) ∼ N (0, σ2I).
Express the expectation of the modified objective J∗ over the Gaussian noise, Eδ∼N [J∗], as a function of the original objective
J added to a term independent of your data. Your answer should be in the form

Eδ∼N [J∗] = J + C,

where C is independent of points in {x(i), y(i)}mi=1.
Hint: For a Gaussian random vector δ with zero mean, and convariance matrix σ2I

Eδ∼N [δδT] = σ2I, Eδ∼N [δ] = 0.

Solution:

J∗ =
1

m

m∑
i=1

(y(i) − (x(i) − δ(i))T θ)2

=
1

m

m∑
i=1

((y(i) − x(i))− δ(i))T θ)2

=
1

m

m∑
i=1

((y(i) − x(i))2 − 2(y(i) − x(i))(δ(i)T θ) + (δ(i)T θ)2)

= J +
1

m

m∑
i=1

(−2(y(i) − x(i))(δ(i)T θ) + (δ(i)T θ)2)

Eδ∼N [J∗] = J + Eδ∼N

[
1

m

m∑
i=1

(−2(y(i) − x(i))(δ(i)T θ) + (δ(i)T θ)2)

]
From Linearity of Expectation, we can take the expectation individually for each sample:

Eδ∼N

[
1

m

m∑
i=1

−2(y(i) − x(i))(δ(i)T θ)

]
= −2(y(i) − x(i))E

[
δ(i)T θ

]
= 0

4
and Eδ∼N

[
(δ(i)T θ)2

]
= σ2∥θ∥22 (from the hint)

Thus, we get:
Eδ∼N [J∗] = J + σ2∥θ∥22. (1)

c) (4 points) What effect would adding noise have on model overfitting/underfitting? Explain why.
Remember that the weights update rule is derived from the loss function, which is the expectation of J∗.
Solution:
Adding noise to the model will prevent overfiting because the model wouldn’t be able to remember a specific point mapping
from x(i) to y(i) due to the noise inserted to x(i). Alternatively, in expectation, the new objective would help regularize the
model, due to the similar L2 regularization term (see the answer for next question) and it is known that L2 regularization
method prevents overfiting.

d) (4 points) Is this method similar to a regularization method we studied in class? If so, specify the regularization method and
prove it and if not, explain why?
Solution:
Yes. It is similar to L2 regularization, but with a scalar multiplicative σ2 (see equation 1) which is the λ in L2 regularization
method.

e) (3 points) Consider the limits σ −→ 0 and σ −→ ∞. What impact would these extremes in the value of σ have on model
training (relative to no noise added)? Explain why.
Solution:
σ −→ 0: Less regularizing/no effect.
σ −→ ∞: All weights get pushed to zero / model underfits.

f) (4 points) Suggest a cost function and a noise that is related to Dropout.
Solution:

J∗ =
1

m

m∑
i=1

(y(i) − (x(i) · γ(i))T θ)2

where γ(i) ∈ Rd are i.i.d. noise vectors. γ(i)
j ∼ Ber(p) (i.i.d.) for j ∈ {1, 2, ..., d}, and the probability 1 − p is the rate of

the dropout.
4) Computable lower bounds (32 Points): In this question, you will prove a simple lower bound on the capacity of a memoryless

channel. Let p(y|x) be a memoryless channel, and let p(x) be a distribution on X . Let r(x|y) be an arbitrary conditional
distribution on X given Y , i.e., for each x ∈ X and each y ∈ Y , r(x|y) ≥ 0 and

∑
x̃∈X r(x̃|y) = 1. Define the functional

F (p, r) as follows:

F (p, r) =
∑
x∈X

∑
y∈Y

p(x)p(y|x) log2
(
r(x|y)
p(x)

)
.

where p in F (p, r) denotes P (x) and p(y|x) is fixed thought the question. Now, for each input distribution p on X , define the
conditional distribution rp as

rp(x|y) =
p(x)p(y|x)∑

x̃∈X p(x̃)p(y|x̃)
.

That is, rp is the ”true” conditional distribution of X given Y when p is the input distribution.
a) (8 points) True/False: For all conditional distributions r we have F (p, r) ≤ F (p, rp).

Solution:
True. Let us show that the difference is non-negative.

F (p, rp)− F (p, r) =
∑
x∈X

∑
y∈Y

p(x)p(y|x) log2
(
rp(x|y)
r(x|y)

)
=
∑
x∈X

∑
y∈Y

p(x)p(y|x) log2
(

p(x)p(y|x)
r(x|y)

∑
x̃∈X p(x̃)p(y|x̃)

)
= D(P1∥P2)

≥ 0,

where P1(x, y) = p(x)p(y|x) and P2(x, y) = r(x|y)
∑

x̃∈X p(x̃)p(y|x̃).
b) (4 points) Show that I(X;Y) = maxr F (p, r).

Solution:

5
From the previous item we can deduce that F (p, rp) = maxr F (p, r). Further,

F (p, rp) =
∑
x∈X

∑
y∈Y

p(x)p(y|x) log2
(
rp(x|y)
p(x)

)
=
∑
x∈X

∑
y∈Y

p(x)p(y|x) log2
(

p(x, y)

p(x)p(y)

)
= I(X;Y),

as required.
c) (8 points) True/False: The functional F (p, r) is strictly concave in both p and r.

Solution:
True. We can rewrite F (p, r) as follows:

F (p, r) =

∑
x∈X

∑
y∈Y

p(x)p(y|x) log2(r(x|y))

+

(∑
x∈X

p(x) log2

(
1

p(x)

))
.

The first term is linear in p while the second term is strictly concave in p (the function t ⇒ t log2
1
t is strictly concave).

Therefore, F (p, r) is strictly concave in p. In addition, the first term is concave in r (the function log2 is strictly concave),
and the second term is constant with respect to r. Therefore, F (p, r) is strictly concave in r.

d) (6 points) In Algorithm 1 below, we introduce an iterative algorithm for maximizing a two-variable function. Following the
previous items, suggest such an iterative algorithm to compute the capacity.
Solution:
Following the previous items, the capacity can be computed as

C = max
p

I(X;Y) (2)

= max
p

max
r

F (p, r). (3)

Accordingly, in the spirit of Algorithm 1, the following algorithm can be used to compute the capacity:

Algorithm 1 Alternating maximization procedure
input: The function F (p, r) that is concave in both p and r
output: A global maximum of F (p, r) (capacity)
set p0 uniform in X and solve r0 = argmaxr F (p0, r)
set i = 1
while F (pi, ri) not converged do

pi = argmaxp F (p, ri−1)
ri = argmaxr F (pi−1, r)
compute F (pi, ri)
i = i+ 1

end
return F (pi, ri)

Note: The Alternating maximization procedure is known to converge to optimal solution when the function g(x, y) is concave
in (x, y).

e) (6 points) For a given memoryless channel, let r∗ denote the conditional distribution that should be used to obtain the capacity.
Write explicitly r∗ for the case of a binary symmetric channel with crossover probability 0.2.
Solution:
The optimal input distribution p∗ for a binary symmetric channel is a uniform distribution. Accordingly,

r∗(x|y) = rp∗(x|y)

=
p∗(x)p(y|x)∑

x̃∈X p∗(x̃)p(y|x̃)
.

Good Luck!

