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Introduction to Information Theory and Machine Learning July 7, 2022.
(Prof. Permuter Haim, Mr. Bashar Huleihel, and Mr. Omer Luxembourg)

Final Exam - Moed A
Total time for the exam: 3 hours!

Please copy the following sentence and sign it: “ I am respecting the rules of the exam: Signature:

Important: For True / False questions, copy the statement to your notebook and write clearly true or false. You should prove the
statement if true, or disprove it, e.g. by providing a counter-example, otherwise.

1) Uncertainty about true distribution (24 Points): Consider a source U with alphabet i/ = {a1,...a.,} and suppose we know
that the true distribution of U is either P, or P, but we are not sure which.
a) (8 points) True/False: There is a prefix code where the length of the codeword associated to a; is I; = {log2 (mﬂ .
b) (8 points) Show that the average (computed using the true distribution) length [ of the code constructed in item (a) satisfies
HU)<I<HU)+2.
¢) (8 points) Now assume that the true distribution of U is one of k distributions Py, ..., Py, but we don’t know which. Show
that there exists a prefix code satisfying H(U) <1 < H(U) + logy(k) + 1.

2) GMM (18 points): We will derive the EM update rules for a univariate Gaussian Mixture Model with two mixture components.
The mean p will be shared between the two mixture components, but each component will have its own standard deviation oy.
The model will be defined as follows:

z ~ Bernoulli(0),
p(zlz = k) is N(p, o).

a) (4 points) Write the density defined by this model (i.e. the probability of x, with z marginalized out)
b) (4 points) E-step - Compute the posterior probability w(?) = Pr(z(") = 1|z(?))

¢) (5 points) M-Step - Calculate the update rule for p (for a fixed o)

d) (5 points) M-Step - Calculate the update rule for oy, (for a fixed pu)

3) Linear Regression (26 Points): You are tasked with solving a fitting a linear regression model on a set of m datapoints where
each feature has some dimensionality d. Your dataset can be described as the set {z(,3}™  where (V) € R?, y() € R.
You initially decide to optimize the loss objective:

using Batch Gradient Descent - in which each step involves calculations over the entire training set. Here, # € R? is your
weight vector. Assume you are ignoring a bias term for this problem.
aJ

a) (4 points) Write each update of the batch gradient descent, %7 in vectorized form. Your solution should be a single vector

(no summation terms) in terms of the matrix X and vectors Y and 6, where
27 y
X = : Y = :
)" ()
b) (7 points) A coworker suggests you augment your dataset by adding Gaussian noise to your features. Specifically, you would
be adding zero-mean, Gaussian noise of known vairance o2 from the distribution

N(0,0%1),
where I € R%*?, 5 ¢ R. This modifies your original objective to:
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where 0(*) are i.i.d. noise vectors, () € R? and §) ~ N(0, o21).
Express the expectation of the modified objective J, over the Gaussian noise, Esr[J:], as a function of the original objective
J added to a term independent of your data. Your answer should be in the form

E(;NN[J*] =J+C,



4)

where C' is independent of points in {z(") y®}m .
Hint: For a Gaussian random vector § with zero mean, and convariance matrix o2/

Esn[067] = 0?1, Esunr[6] = 0.

¢) (4 points) What effect would adding noise have on model overfitting/underfitting? Explain why.
Remember that the weights update rule is derived from the loss function, which is the expectation of J,.

d) (4 points) Is this method similar to a regularization method we studied in class? If so, specify the regularization method and
prove it and if not, explain why?

e) (3 points) Consider the limits ¢ — 0 and 0 — oo. What impact would these extremes in the value of o have on model
training (relative to no noise added)? Explain why.

f) (4 points) Suggest a cost function and a noise that is related to Dropout.

Computable lower bounds (32 Points): In this question, you will prove a simple lower bound on the capacity of a memoryless
channel. Let p(y|z) be a memoryless channel, and let p(x) be a distribution on X. Let r(z|y) be an arbitrary conditional
distribution on & given ), i.e., for each x € A’ and each y € Y, r(x|y) > 0 and ), _, r(Z|y) = 1. Define the functional
F(p,r) as follows:

Fipr) = X X peploia) oy (S5

TEX yeY
where p in F(p,r) denotes P(z) and p(y|x) is fixed thought the question. Now, for each input distribution p on X, define the
conditional distribution 7, as
p(x)p(ylz)
zex P(Z)p(y|T)
That is, r,, is the “true” conditional distribution of X" given ) when p is the input distribution.

rp(zly) = 5

a) (8 points) True/False: For all conditional distributions = we have F'(p,r) < F(p,rp).

b) (4 points) Show that I(X;Y) = max, F(p,r).

¢) (8 points) True/False: The functional F'(p,r) is strictly concave in both p and r.

d) (6 points) In Algorithm (1| below, we introduce an iterative algorithm for maximizing a two-variable function. Following the
previous items, suggest such an iterative algorithm to compute the capacity.

Algorithm 1 Alternating maximization procedure

input: A function g(x,y) that is concave in both x and y.
output: A global maximum of g(z,y).

initiate 7o to some value and solve yo = arg max, g(zo,y).
set 7 = 1.

while g(x;,y;) not converged do

end

T; = argmax, g(l’, yifl)
Yi = argmax,, g(xi-1,y)
compute g(zi, y;)
1=1+1

return g(z:, 1)

Note: The Alternating maximization procedure is known to converge to optimal solution when the function g(z,y) is concave
in (z,y).

e) (6 points) For a given memoryless channel, let »* denote the conditional distribution that should be used to obtain the capacity.
Write explicitly 7* for the case of a binary symmetric channel with crossover probability 0.2.

Good Luck!



