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Introduction to Information Theory and Machine Learning June 28th, 2021.

(Prof. Permuter Haim, Mr. Eli Shmuel, Mr. Dor Tsur, Mr. Bashar Huleihel and Mr. Omer Luxembourg)

Final Exam - Moed A

Total time for the exam: 3 hours!

Please copy the following sentence and sign it: “ I am respecting the rules of the exam: Signature: ”

Important: For True / False questions, copy the statement to your notebook and write clearly true or false. You should prove the

statement if true, or disprove it, e.g. by providing a counter-example, otherwise.

1) True or False (16 Points):

a) For any two random variables X,Y and any a ∈ R: H(Y |aX) = H(Y |X).
b) Assume that the Markov chain Y0 − Y1 − · · · − Yn holds. Then H(Y0|Yn) is non-decreasing with n.

c) There exists a discrete memoryless channel (DMC) with the following input and output alphabets: X = {0, 1} and

Y = {2, 3, 4, 5}, respectively, with capacity C = 2 bits / channel use.

d) The divergence is symmetric, i.e.,

D(PX ||QX) = D(QX ||PX) (1)

for any PX and QX .

If true, prove it. Otherwise, in this section only, you do not need to provide a counter-example, but give an example of

two different distributions PX and QX (PX 6= QX ), such that (1) holds.

2) Entropy of 3 pairwise independent random variables (12 Points): Let W,X, Y be 3 random variables distributed each

Bernoulli (0.5) that are pairwise independent, i.e., I(W ;X) = I(X;Y ) = I(W ;Y ) = 0.

a) What is the maximum possible value of H(W,X, Y )?
b) What is the condition under which this maximum is achieved?

c) What is the minimum possible value of H(W,X, Y )?
d) Give a specific example achieving this minimum.

3) Cascaded BSCs (32 Points): Consider two binary symmetric channels, BSC(α) and BSC(β), with crossover probabilities

α, β ∈ (0, 1). Let k be an even integer. Then, we cascade independent k such channels, where half of them are (identical)

BSC(α), and the other half are (identical) BSC(β). We cascade those channels alternately, namely, the first channel is BSC(α),
the second channel is BSC(β), the third channel is BSC(α), etc.

a) (6 points) Assume that neither encoding nor decoding is allowed at the intermediate terminals. What is the capacity of

this cascaded channel as a function of α, β, and k? You are allowed to express your result in terms of convolutions (see

remark below).

b) (4 points) Assume that decoding and encoding is allowed at the intermediate points. What is the capacity of this channel

as a function of α, β, and k?

c) (4 points) What is the capacity of each of the above settings when k → ∞?

d) (6 points) Suppose now that the channels are not cascaded alternately but in some random order. Will the capacity remain

the same in section (a) and in section (b)? Explain your answers.

e) (12 points) We now cascade k (even integer) identical and independent BSC(α), with α ∈ (0, 0.5). Assume that decoding

and encoding is allowed only at one intermediate point 1 < m < k. What is the capacity of this channel as a function of

α, k and m? Also, which m maximizes the capacity, i.e., where is the optimal position of the intermediate point? Prove

your answer.

Remark: You can express your result in terms of convolutions (for your convenience you may use α⊕k to designate the

convolution of α with itself k times). The convolution between α and β is defined as: α⊕ β = α(1− β) + (1− α)β.

4) Loss Functions for Logistic Regression Models (22 points): Given two models, we want to select the best model in terms of

the loss function. Both of the models are a logistic regression model, but with a different architecture. The models are created

by a function g(·) −→ [0, 1] as follows:

P̂ (y|x;w) = g

(

w0 +

M
∑

n=1

wnφn(x)

)

,

where x ∈ R is the input of the model.

Model 1: φ
(1)
i (x) =

{

x2 i = 1

0 i > 1
, Model 2: φ

(2)
i (x) =











x i = 1

cos(x) i = 2

0 i > 2

.
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a) (4 points) Given N training samples (xi, yi), i ∈ {1, 2, ...N}, we evaluate the MSE risk function score of the two models.

Which is better in terms of the risk function score? Model 1, model 2 or neither? Explain your answer.

b) (4 points) Define the Baysian Information Criteria (BIC) as follows:

BIC = −2× LL(N) + log(N)× k,

where N is the number of samples, LL(N) is the log-likelihood as a function of N , and k is the number of parameters

in the model. This criterion measures the trade-off between model fit and complexity of the model.

Let LL1(N) be the log-probability of the labels that model 1 predicted to N training samples, where the probabilities

are evaluated at the maximum likelihood setting of the parameters. Let LL2(N) be the corresponding log-probability for

model 2. We assume here that LL1(N) and LL2(N) are evaluated on the basis of the first N training examples from a

much larger set.

Our empirical studies has shown that these log-probabilities are related in the next way:

LL2(N)− LL1(N) ≈ 0.001×N.

How will we select between the two models, when using the BIC score , as a function of the number of training examples?

Choose the correct answer.

i) Always select model 1.

ii) Always select model 2.

iii) First select model 1. Then, for larger N , select model 2.

iv) First select model 2. Then, for larger N , select model 1.

c) (6 points) Provide an explanation for your last answer.

d) (8 points) This section does not depend on the previous ones. Let g(·) be the Sigmoid function and consider the Binary

Cross-Entropy loss function, where the labels, {yi}
N
i=1, are 0 or 1. Suppose you use gradient descent to obtain the optimal

parameters {wi}
M
i=0 for each model. Give the update rule to each parameter for the two models.

5) Variational Inference (28 points) In class, we had learned how to apply the tools of variational inference to the Bayesian

mixture of Gaussians model. In this question, we will apply them to approximate the mixture of exponential distributions.

Assume the following setting: We consider a variant of the Bayesian mixture distribution taught in class: Our data is distributed

as a mixture of K exponential distributions with the following parameters:

• The exponential distribution parameter is also a random variable, apriori distributed exponentially: µk ∼ exp(λk) for

k ∈ {1...K}
• ci is the exponential assignment of xi, which, as taught in class, can be encoded into a one-hot vector. The apriori

distribution of it is ci ∼ Unif(K).

In this question we would like to approximate P (zm|xn) from a set of n samples xn using variational inference. Therefore,

we will use the distribution q(zm) to do that. This distribution is defined using the parameters (ϕ, bK) as follows:

• µk ∼ exp(bk) for k ∈ {1 . . . K}
• q(ci) is the categorical distribution ci ∼ ϕi for i ∈ {1 . . . n} with ϕi = {ϕi,1, . . . , ϕi,k}.

a) (4 points) What is zm in our question? what is the size of m?

b) (6 points) Write P (xn, zm) as explicit as you can by filling the following qualities in your notebook:

P (xn, zm) = P (xn, µK , cn)

= ?

= ?

=

K
∏

k=1

λk exp(−λkµk)

n
∏

i=1

1

K
µci exp(−µcixi)

c) (8 points) Write explicitly the ELBO for our case, assume mean-field approximation.

Reminder: ELBO = E [logP (zm)] + E [logP (xn|zm)]− E [log q(zm)] .
d) (6 points) This section does not depend on the previous ones. The derivation taught in class for the Bayesian mixture

of Gaussians arrives to an update of the form ϕi,k ∝ f(µk, xi,mk, s
2
i ) for some function f . What steps are required

to derive a formula of the form ϕi,k = g(µk, xi,mk, s
2
i ) for some function g? i.e., from just proportion to an equation.

Express g as a function of f .

e) (4 points) This section does not depend on the previous ones. Assume we want to perform a maximization of some

arbitrary function g(x, y). We know how to maximize g over x when y is fixed and over y when x is fixed. Suggest an

algorithm for the maximization of g with respect to both variables. Under your suggested algorithm, are we guaranteed

to converge to the global maximum of g?

Reminder: The probability density of the exponential distribution with parameter λ is given by fX(x) = λ exp(−λx)
for x > 0.

Good Luck!


