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Introduction to Information Theory and Machine Learning July 13th, 2020.

(Prof. Permuter Haim, Mr. Eli Shmuel, Mr. Dor Tsur and Mr. Ben Marinberg)

Final Exam - Moed Alef

Total time for the exam: 3 hours!

Please copy the following sentence and sign it: “ I am respecting the rules of the exam: Signature: ”

1) (7 points) Assume Y1 − Y2 − · · · − Ym forms a Markov chain. Simplify I(Y1;Y2, Y3, . . . , Ym) to its simplest form.

Solution: I(Y1;Y2, Y3, . . . , Ym) = H(Y1)−H(Y1|Y2, . . . , Ym) = H(Y1)−H(Y1|Y2) where the last equality follows from the

Markovity. Hence, I(Y1;Y2, Y3, . . . , Ym) = I(Y1;Y2).
2) (7 points) Assume X − Y − Z forms a Markov chain. Show that

I(X;Y ) ≥ I(X;Y |Z).

When does an equality hold?

Hint: Chain rule on I(X;Y,Z).
Solution: From the information chain rule: on the one hand I(X;Y,Z) = I(X;Y ) + I(X;Z|Y ), while on the other hand

I(X;Y,Z) = I(X;Z) + I(X;Y |Z). Hence I(X;Y ) − I(X;Y |Z) = I(X;Z) − I(X;Z|Y ) = I(X;Z), where the last

inequality follows from the given Markov chain. Hence I(X;Y ) ≥ I(X;Y |Z), and an equality holds iff I(X;Z) = 0, i.e.

X ⊥⊥ Z. Another solution is by using Question 1).
3) (7 points) Let f(y) be an arbitrary function defined for y ≥ 1. Let X be a random variable taking values in X = {x1, x2, ..., xn}

with probability pi = Pr(X = xi), i = 1, 2, ..., n. Define the f -entropy of X by

Hf (X) ,
n∑

i=1

pif

(
1

pi

)
.

If f(·) is concave, show that the following inequality is always satisfied:

Hf (X) ≤ f(n).

Solution: Consider xi =
1
pi

, then

Hf (X) =
n∑

i=1

pif

(
1

pi

)
= E[f(X)]

(a)

≤ f(E[X]) = f(
n∑

i=1

pi
1

pi
) = f(n).

where (a) follows from Jensen’s inequality because f(·) is concave.

4) (17 points) Assume X is a random variable taking values in X = {1, 2, 3, ...} with E[X] = M .

a) (10 points) Show: H(X) ≤ M .

b) (7 points) For M = 2, what distribution PX achieves an equality?

Solution:

a) Consider Q(x) = 1
2x (make sure it is a legal probability measure). Then for any distribution P (x):

D(P ||Q) =

∞∑

x=1

P (x) log

(
P (x)

Q(x)

)
≥ 0.

Simplifying D(P ||Q) = E[X]−H(X) ≥ 0 gives that H(X) ≤ M .

b) As we studied for divergence, D(P ||Q) = 0 iff P = Q. For the choice P (x) = 1
2x we then have H(X) = M = 2.

5) (12 points) Consider a ternary channel with input Xi and output Yi, i.e. Xi, Yi ∈ {0, 1, 2}. Let ⊕ denote addition modulo-3.

The channel law is given by

Yi = Xi ⊕Wi

where noises {Wi} are independent of {Xi} and are distributed i.i.d. ∼ W , Wi ∈ {0, 1, 2}.

Wi

YiXi

Fig. 1: An additive channel.

What is the capacity of this channel and what is the input distribution PX that achieves the capacity?
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Solution: For any PX we have

I(X;Y ) = H(Y )−H(Y |X)

(a)
= H(Y )−H(Y ⊕X|X)

= H(Y )−H(W |X)

(b)
= H(Y )−H(W )

(c)

≤ log 3−H(W ) (1)

where (a) is due to invariance of entropy to any one-to-one transformation of the random variable; (b) follows from W ⊥⊥ X;

and (c) follows because Y is ternary. (c) is achieved with equality if the distribution of Y is uniform, and it can be induced

when PX is distributed uniformly as well.

6) Neural networks Highway gate (28 pt) Fig. 2 visualizes a simple Highway gated network. The network has three linear

layers, the first two is followed by ReLU activation function (marked by σ). The Highway gate H and its complementary gate

H̄ are defined using a learnable parameter h as follows:

H(x) = x · h, (2)

H̄(x) = x · (1− h). (3)

Layer 1 σσ Layer 2 H̄ Layer 3

H

Input
x

Output

a(x)

Fig. 2: A scheme of neural network with Highway gates

Initialize the network parameters as:

x = [0.1, 0.2, 0.6, 0.5]T , y = 3, w1 =




0.5 0.2 0.3 −0.5
0.2 −0.5 0.1 0.8
−0.3 0.4 0.3 −0.2


 , w2 =



0.2 0.1 0.3
0.1 −0.5 0.1
0 0.6 −0.7


 , w3 = [1.5, 1, 0.5], h = 0.4.

a) (10 points) Calculate the derivatives ∂C
∂w2

3,1

, ∂C
∂h

. Consider MSE cost function.

b) (3 points) Explain for what purpose one need to calculate the derivative in a).

c) (8 points) Calculate the derivative ∂C
∂w1

2,2

for h = 0, h = 0.5 and h = 1. In which case the parameter update is largest?

d) (7 points) In feed-forward neural networks with many layers, Highway gates are very common. Explain the motivation

of using Highway gates in deep networks?

Solution MSE , 1
2 (y − a)2 NO POINTS WERE TAKEN IF YOU HAVE NOT USED 1

2 FACTOR

First, we feed forward



0.1
0.2
0.6
0.5


→



0.02
0.38
0.13


→



0.082h + 0.081(1− h)
0.38h+ 0 · (1− h)

0.13h+ 0.137(1− h)


 =



0.0566
0.152
0.1342


→ 0.304 (4)

a)

∂C

∂w2
3,1

=
∂C

∂a3
∂a3

∂a23

∂a23
∂H̄3

∂H̄3

∂ã23

∂ã23
∂z̃23

∂z̃23
∂w2

3,1

= (a− y) · w3
1,3 · (1− h) · a11 = (0.304− 3) · 0.5 · 0.6 · 0.02 ≃ −0.0161 (5)

∂C

∂h
=

∂C

∂a3
∂a3

∂a2

(
∂a2

∂H̄

∂H̄

∂h
+

∂a2

∂H

∂H

∂h

)
= (a− y) · w3(a1 −ReLU(w2a1)) (6)

= −2.696 · [1.5, 1, 0.5]



0.02 − 0.081

0.38− 0
0.13− 0.137


 ≃ −0.7684 (7)

b) We need the derivatives to update the learnable parameters.
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c)

∂C

∂w1
2,2

=
∂C

∂a3
∂a3

∂a2

(
∂a2

∂H̄

∂H̄

∂ã2
∂ã2

∂z̃2
∂z̃2

∂a12
+

∂a2

∂H

∂H

∂a12

)
∂a12
∂z12

∂z12
∂w1

2,2

= (a− y)w3





(1− h) · 1 · w2

1,2

(1− h) · 0 · w2
2,2

(1− h) · 1 · w2
3,2


+



0
h

0




x2

(8)

= −2.696 · [1.5, 1, 0.5]



(1− h)0.2

h

(1− h)0.4


 · 0.2 = −0.2696(1 + h) (9)

∂C

∂w1
2,2

|h=0 = −0.2696,
∂C

∂w1
2,2

|h=0.5 = −0.4044,
∂C

∂w1
2,2

|h=1 = −0.5392 (10)

d) Highway gates improve gradient flow. We derive using the chain rule , therefore the more layers we have the more

gradients multiplications we have on our derivation chain. This phenomena is known as vanishing gradients and Highway

gates overcomes this by providing a better route for the gradients to flow in.

7) Variant of MINE (32 pt)

In this question we investigate an algorithm based on the mutual information neural estimator, using the following representation

of mutual information:

I(X;Y ) = H(X) +H(Y )−H(X,Y ). (11)

Let X ∼ PX , Y ∼ PY and denote the joint PMF of (X,Y ) by PXY . Let UX be the PMF of the uniform discrete probability

measure over X , the alphabet of X (namely, UX(x) = 1
|X | ∀x ∈ X ).

a) (5 points) Prove the following equality:

H(X) = H(PX , UX)−DKL(PX‖UX), (12)

where H(PX , UX) is the cross-entropy between PX and UX .

b) (5 points) If we replace the uniform PMF UX by an arbitrary PMF VX , does Eq. (12) still hold? Prove or disprove it.

c) (5 points) Based on the result of (a), prove the following equation:

I(X;Y ) = DKL(PXY ‖UXY )−DKL(PX‖UX)−DKL(PY ‖UY ), (13)

where UY and UXY are defined in the same sense as UX , on Y and X ×Y respectively (assume that |X ×Y| = |X ||Y|).
d) (10 points) Based on the KL divergence estimation method taught in class, propose an algorithm for the estimation of

I(X;Y ) from a sample set {(xi, yi)}
n
i=1 ∼ PXY , based on the equality proved in (b). Denote by Î

(H)
n (X,Y ):

i) Write the optimization objective

ii) Give a block diagram of the proposed algorithm for estimating Î
(H)
n (X,Y ). Assume the neural network consists of

a single hidden layer with M units.

e) (7 points) We now wish to calculate the optimization objective Î
(H)
n (X,Y ). For sufficiently large n, does the following

hold? explain.

Î(H)
n (X,Y ) ≤ I(X;Y ) (14)

Solution

a) Proof:

H(X) = EPX

[
log

1

PX

]

= EPX

[
log

UX

PXUx

]

= EPX

[
log

1

UX

]
− EPX

[
log

Px

UY

]

= H(PX , Ux)−DKL(PX‖UX)

b) We did not use the fact that UX is a uniform PMF, therefore, the above equality is true for every PMF VX such that the

KL-divergence is well defined.

c) Proof:

I(X;Y ) = H(X) +H(Y )−H(X,Y )

= H(PX , UX)−DKL(PX‖UX) +H(PY , UY )−DKL(PY ‖UY )

− (H(PXY , UXY )−DKL(PXY ‖UXY ))

= DKL(PXY ‖UXY )−DKL(PX‖UX)−DKL(PY ‖UY )

+H(PX , UX) +H(PY , UY )−H(PXY , UXY ).
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Let us show that the cross entropies cancel out (denote by HX , HY , HXY ):

HX +HY −HXY = EPX

[
log

1

UX

]
+ EPY

[
log

1

UY

]
− EPXY

[
log

1

UXY

]

=
∑

x∈X

PX(x) log
1

UX(x)
+
∑

Y ∈Y

PY (y) log
1

UY (y)
−

∑

x,y∈X×Y

PX,Y (x, y) log
1

UX,Y (x, y)

=
∑

x∈X

PX(x) log
1

|X |
+
∑

Y ∈Y

PY (y) log
1

|Y|
−

∑

x,y∈X×Y

PX,Y (x, y) log
1

|X ||Y|

= log
1

|X |

∑

x∈X

PX(x) + log
1

|Y|

∑

Y ∈Y

PY (y)− log
1

|X ||Y|

∑

x,y∈X×Y

PX,Y (x, y)

= log
1

|X |
+ log

1

|Y|
− log

1

|X ||Y|

= log
|X ||Y|

|X ||Y|

= 0.

Therefore,

I(X : Y ) = DKL(PXY ‖UXY )−DKL(PX‖UX)−DKL(PY ‖UY ) (15)

d) Solution:

i) We follow the steps taken in class - we use the Donsker-Varadhan representation and replace the expectations with

empirical means. The objective is of the form:

I(H)
n (X;Y ) = sup

θXY ∈ΘXY

1

n

n∑

i=1

TθXY
(xi, yi)− log

(
1

n

n∑

i=1

eTθXY
(x̃i,ỹi)

)

− sup
θX∈ΘX

1

n

n∑

i=1

TθX (xi)− log

(
1

n

n∑

i=1

eTθX
(x̃i)

)

− sup
θY ∈ΘY

1

n

n∑

i=1

TθY (yi)− log

(
1

n

n∑

i=1

eTθY
(ỹi)

)

ii) We denote the objectives of the supremization problems by LXY , LX , and LY respectively. A block diagram is

provided in the attached figure.

e) Our optimization objective consists of a difference of supremums. Therefore, we cannot claim it is either a lower or upper

bound on the true value of the mutual information. Consequently, we cannot state that the inequality hold.

Good Luck!
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Fig. 3: Proposed block diagram for 7.d.


