Final Exam - Moed Alef

Total time for the exam: 3 hours!

Please copy the following sentence and sign it: "I am respecting the rules of the exam: Signature:_____"

- 1) (7 points) Assume $Y_1 Y_2 \cdots Y_m$ forms a Markov chain. Simplify $I(Y_1; Y_2, Y_3, \dots, Y_m)$ to its simplest form.
- 2) (7 points) Assume X Y Z forms a Markov chain. Show that

$$I(X;Y) \ge I(X;Y|Z).$$

When does an equality hold? Hint: Chain rule on I(X; Y, Z).

3) (7 points) Let f(y) be an arbitrary function defined for $y \ge 1$. Let X be a random variable taking values in $\mathcal{X} = \{x_1, x_2, ..., x_n\}$ with probability $p_i = \Pr(X = x_i), i = 1, 2, ..., n$. Define the f-entropy of X by

$$H_f(X) \triangleq \sum_{i=1}^n p_i f\left(\frac{1}{p_i}\right).$$

If $f(\cdot)$ is concave, show that the following inequality is always satisfied:

$$H_f(X) \le f(n). \tag{1}$$

- 4) (17 points) Assume X is a random variable taking values in $\mathcal{X} = \{1, 2, 3, ...\}$ with E[X] = M.
 - a) (10 points) Show: $H(X) \leq M$.
 - b) (7 points) For M = 2, what distribution P_X achieves an equality?
- 5) (12 points) Consider a ternary channel with input X_i and output Y_i , i.e. $X_i, Y_i \in \{0, 1, 2\}$. Let \oplus denote addition modulo-3. The channel law is given by

$$Y_i = X_i \oplus W_i$$

where noises $\{W_i\}$ are independent of $\{X_i\}$ and are distributed i.i.d. $\sim W, W_i \in \{0, 1, 2\}$.

Fig. 1: An additive channel.

What is the capacity of this channel and what is the input distribution P_X that achieves the capacity?

6) Neural networks Highway gate (28 pt) Fig. 2 visualizes a simple Highway gated network. The network has three linear layers, the first two is followed by ReLU activation function (marked by σ). The Highway gate H and its complementary gate \overline{H} are defined using a learnable parameter h as follows:

$$H(x) = x \cdot h,$$

$$\bar{H}(x) = x \cdot (1 - h).$$
(2)
(3)

Fig. 2: A scheme of neural network with Highway gates

Initialize the network parameters as:

$$x = [0.1, 0.2, 0.6, 0.5]^T, y = 3, w^1 = \begin{bmatrix} 0.5 & 0.2 & 0.3 & -0.5 \\ 0.2 & -0.5 & 0.1 & 0.8 \\ -0.3 & 0.4 & 0.3 & -0.2 \end{bmatrix}, w^2 = \begin{bmatrix} 0.2 & 0.1 & 0.3 \\ 0.1 & -0.5 & 0.1 \\ 0 & 0.6 & -0.7 \end{bmatrix}, w^3 = [1.5, 1, 0.5]^T, h = 0.4.$$

- a) (10 points) Calculate the derivatives \$\frac{\partial C}{\partial w_{3,1}^2}\$, \$\frac{\partial C}{\partial h}\$. Consider MSE cost function.
 b) (3 points) Explain for what purpose one need to calculate the derivative in a).
 c) (8 points) Calculate the derivative \$\frac{\partial C}{\partial w_{2,2}^1}\$ for \$h = 0, h = 0.5\$ and \$h = 1\$. In which case the derivative is largest?
- d) (7 points) In feedforward neural networks with many layers, Highway gates are very common. Explain the motivation of using Highway gates in deep networks?

7) Variant of MINE (32 pt)

In this question we investigate an algorithm based on the mutual information neural estimator, using the following representation of mutual information:

$$I(X;Y) = H(X) + H(Y) - H(X,Y).$$
(4)

Let $X \sim P_X$, $Y \sim P_Y$ and denote the joint PMF of (X, Y) by P_{XY} . Let U_X be the PMF of the uniform discrete probability measure over \mathcal{X} , the alphabet of X (namely, $U_X(x) = \frac{1}{|\mathcal{X}|} \quad \forall x \in \mathcal{X}$).

a) (5 points) Prove the following equality:

$$H(X) = H(P_X, U_X) - D_{KL}(P_X || U_X),$$
(5)

where $H(P_X, U_X)$ is the cross-entropy between P_X and U_X .

b) (5 points) If we replace the uniform PMF U_X by an arbitrary PMF V_X , does Eq. (5) still hold? Prove or disprove it.

c) (5 points) Based on the result of (a), prove the following equation:

$$I(X;Y) = D_{KL}(P_{XY}||U_{XY}) - D_{KL}(P_X||U_X) - D_{KL}(P_Y||U_Y),$$
(6)

where U_Y and U_{XY} are defined in the same sense as U_X , on \mathcal{Y} and $\mathcal{X} \times \mathcal{Y}$ respectively (assume that $|\mathcal{X} \times \mathcal{Y}| = |\mathcal{X}||\mathcal{Y}|$). d) (10 points) Based on the KL divergence estimation method taught in class, propose an algorithm for the estimation of

I(X;Y) from a sample set $\{(x_i, y_i)\}_{i=1}^n \sim P_{XY}$, based on the equality proved in (b). Denote by $\widehat{I}_n^{(H)}(X,Y)$:

- i) Write the optimization objective
- ii) Give a block diagram of the proposed algorithm for estimating $\widehat{I}_n^{(H)}(X,Y)$. Assume the neural network consists of a single hidden layer with M units.
- e) (7 points) We now wish to calculate the optimization objective $\hat{I}_n^{(H)}(X,Y)$. For sufficiently large n, does the following hold? explain.

$$I_n^{(H)}(X,Y) \le I(X;Y) \tag{7}$$

Good Luck!