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Introduction to Information and Coding Theory July 25, 2019

(Prof. Permuter Haim, Mr. Oron Sabag and Mr. Ben Marinberg)

Final Exam - Moed B

Total time for the exam: 3 hours!

Important: For True / False questions, copy the statement to your notebook and write clearly true or false. You should prove the

statement if true, and provide counterexample otherwise.

1) Entropy and differential entropy of continuous random variable (28 Points): Let U be a uniform random variable on the

interval [0, α], and let fU be its density.

a) (4 points) Draw the density fU .

b) (4 points) Differential entropy of U is defined as

h(U) =

∫ +∞

−∞

−fU (u) log fU (u)du.

Compute the differential entropy of U .

c) (4 points) The quantized version of U is given by XN , where N is the number of the quantizations.

Specifically, define ∆ = α
N

, and then

XN = i, if i∆ ≤ U < (i+ 1)∆.

What is the PMF (probability mass function) of XN , draw it and compute the entropy H(XN ) as a function of N .

d) (4 points) What is limN→∞ H(XN ).
e) (4 points) True or False: The entropy of a continuous random variable is infinite. (Explain your answer.)

f) (4 points) What is limN→∞(H(XN ) + log∆).
g) (4 points) Suggest an algorithm to estimate differential entropy using entropy.

Solution Q1:

a)

f(u) =

{
1
α
, 0 ≤ u ≤ α

0, otherwise

u

f(u)

α

1/α

b) Consider the following

h(U) =

∫ +∞

−∞

−fU (u) log fU (u)du

=

∫ +α

0

− 1

α
log

(
1

α

)

du

= log(α).
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c) The PMF of XN is determined by

Pr[XN = i] = Pr[i∆ ≤ U < (i+ 1)∆]

=

∫ (i+1)∆

i∆

fU (u)du

=

∫ (i+1)∆

i∆

1

α
du

=
∆

α

=
1

N
.

Thus, XN has a discrete uniform distribution on {0, . . . , N − 1}, that can be described as follows:

i
N-1

1/N

1 2 ...

...

Obviously, the entropy of a uniform random variable is:

H(XN ) = log |XN |
= log(N).

d) From the above item, limN→∞ H(XN ) = limN→∞ logN =∞.

e) True. The number of bits that can be stored on a continuous random variable is infinity.

More precisely, assume that X has a continuous density function f(x). We quantize the support of X into bins of size

∆. By the mean value theorem, we know that there exists xi in bin i such that

P (X = i) =

∫ (i+1)∆

i∆

f(x)dx

= ∆xi.

Then, the entropy of X∆ is:

H(X∆) = −
∑

i

(∆xi) log(∆xi)

= − log(∆)−
∑

i

(∆xi) log(xi),

where the second equality follows from the PMF definition. The entropy goes to infinity as ∆ → 0. Note that the

remaining sum is a Riemann sum that tends to the differential entropy as ∆→ 0 (assuming the limit exists).

f)

lim
N→∞

(H(XN ) + log∆) = lim
N→∞

[

log(N) + log
( α

N

)]

= lim
N→∞

(logα)

= h(U).

g) From part (f) we can see that for large enough N ,

h(U) ≈ H(XN ) + log(∆)
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Thus, a possible algorithm is quantize uniformly the support of the continuous random variable to bins of size ∆, calculate

the entropy of the quantized random variable. Since it will blow up, we should add a correcting factor of log(∆).

2) Time - varying BSC (24 Points) Consider a time-varying memoryless BSC: the probability for flipping a bit at time i is

equal to pi for i = 1, . . . , n as described in Fig. 1. The channel is memoryless and without feedback as assumed in class.

Xi Yi

1− pi

1− pi

pi

pi
0 0

11

Fig. 1: Time-varying BSC.

a) (6 points) Calculate the capacity that is given by maxp(x1,...,xn)
1
n
I(Xn;Y n).

b) (6 points) Consider the time-invariant version of this channel with a normalized average parameter, i.e. p̄ = 1
n

∑n

i=1 pi.

Calculate the capacity that is given by maxp(x1,...,xn)
1
n
I(Xn;Y n).

c) (6 points) True or False: For a fixed p(x) mutual information I(X;Y ) is convex in p(y|x).
d) (6 points) Is the time-varying or the time-invariant version has a greater capacity? Prove your answer.

Solution:

a) We will first show an upper bound, and then proceed to show the argument that achieves this upper bound. Consider the

following upper bound:

max
p(x1,...,xn)

1

n
I(Xn;Y n) = max

p(x1,...,xn)

1

n
H(Y n)−H(Y n|Xn)

(a)

≤ max
p(x1,...,xn)

1

n

∑

i

H(Yi)−H2(pi)

(b)

≤ 1

n

∑

i

(1−H2(pi)),

where (a) follows from the fact that conditioning reduces entropy and the channel law, and (b) follows from H(Yi) ≤ 1
and that the expression does not depend on the maximization.

computing the expression with P (xn) that is i.i.d. distributed as Bern(0.5) achieves the upper bound.

b) This is a memoryless channel whose average mutual information is equal to the capacity

max
p(x1,...,xn)

1

n
I(Xn;Y n) = 1−H2(p̄).

c) From Lecture 2.

d) By the convexity of the mutual information in the channel law, the capacity of the time-varying channel is greater (more

be precisely, if I(X;Y ) is convex in P (y|x), then I(Xn;Y n) is convex in P (yn|xn)). Another correct argument is the

concavity of the entropy function.

3) Neural network initialization (23 Points): Consider a neural network with L layers. The first layer is the input, denoted by

x, and the last layer is the output. The network sizes are [N1, N2, .., NL]. All activation functions are the sigmoid function.

The initial weights are drawn i.i.d. from some distribution that has mean (expected value) µw, and variance σ2
w.

Recall that we defined zli as the input to the sigmoid of the i’th neuron in the l’th layer. The question is mostly on z2i which

is a linear function of the input x.

a) (6 Points) Assume input vector of N1 ones, i.e. x = [1, 1, .., 1
︸ ︷︷ ︸

N1

]. Calculate the mean and the variance of z2i for i =

1, 2, .., N2. The answer should be a function of µw, σw.

b) (10 Points) What are the best values for the mean and variance of the activation inputs z2i for i = 1, 2, .., N2, explain

your answer.

c) (7 Points) A student suggested to initialize the weights with N (0, 1
N1

). Repeat question a), and check if it satisfies the

values you suggested in b).

Solution Q3:

a) using the fact that x = [1, 1, .., 1
︸ ︷︷ ︸

N1

] :

E
[
z2i
]
= E

[
N1∑

i=1

wixi

]

(a)
=

N1∑

i=1

E[wi] = N1µw.
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Var[z2i ] = Var

[
N1∑

i=1

wixi

]

(b)
=

N1∑

i=1

Var[wi] = N1σ
2
w.

Where in (a) we used the linearity of the expectation, and in (b) we used the fact that the weights are drawn i.i.d.

b) The best values for the mean and variance of the activation inputs z2i will be the ones that achieve zero mean and a

small variance. For example - N (0, 1). The reason that we would want to have activation values with zero mean and

small variance while using the Sigmoid function is to avoid saturation. Namely, to keep σ(zli) in the linear region so that

σ′(zli) values aren’t too small, which could cause what is called the ”Vanishing Gradient”. The ”Vanishing Gradient”

can ruin the learning process, and we might get stuck in saturation, hence fail to learn.

Additional explanation: Let’s assume we’re using some cost function (for example the MSE cost function, or the Cross-

Entropy cost function). As shown in class:

δlj =
∑

k

wl+1
kj δl+1

k σ′(zlj).

∂C

∂wl
jk

= δlja
l−1
k .

∂C

∂blj
= δlj .

If our activations, σ(zlj), aren’t in the linear region, the term σ′(zlj) will be small, resulting in a small error, δlj . This is a

phenomenon that gets worse the more we go deeper into our network during Backpropagation. The result will be a very

small gradient which will cause the model to stick to its current parameters and not learn well.

To emphasize this important matter, consider this graph:

Fig. 2: Sigmoid and Sigmoid Prime
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c) Repeating part (a) we achieve:

E[z2i ] = 0.

Var[z2i ] = 1.

Which satisfies (b).

4) Linear regression (30 Points): Given training set {(xi, yi)}Ni=1 where (xi, yi) ∈ R
2.

First, we use a linear regression method to model this data, assume the model has no bias, i.e. b=0. To test our linear regressor,

we choose at random some data records to be a training set, and choose at random some of the remaining records to be a test

set. Now let us increase the training set size gradually.

a) (7 points) As the training set size increases, what do you expect will happen with the mean training error? explain your

answer.

b) (7 points) As the training set size increases, what do you expect will happen with the mean test error? explain your

answer.

Now we have prior knowledge of our dataset’s distribution yi ∼ N (log(wxi), 1).
c) (10 points) We now perform a maximum likelihood estimation of w. Which of the following conditions is sufficient and

necessary for a maximum likelihood estimation of w:

i)
∑

i xi log(wxi) =
∑

i xiyi log(wxi)
ii)
∑

i xiyi =
∑

i xiyi log(wxi)
iii)

∑

i xiyi =
∑

i xi log(wxi)
iv)

∑

i yi =
∑

i log(wxi)

d) (6 points) Provide a pseudocode (or a matlab code) for estimating w.
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Solution Q4:

a) Using the same linear regression model with more training data will result in the following: The model will minimize

the MSE cost function with respect to a larger amount of samples, resulting in a higher training error mean value.

b) More training data increases the likeliness that the training set will ’represent’ the test set, resulting in a decreased mean

test error.

c) We could write the log likelihood as:

LL = log

(
n∏

i=1

1√
2πσ2

exp

(

− (yi − log(wxi))
2

2σ2

))

= log

(
n∏

i=1

1√
2π

exp

(

− (yi − log(wxi))
2

2

))

=

n∑

i=1

log

(
1√
2π

exp

(

− (yi − log(wxi))
2

2

))

.

Now derive the expression with respect to w:

∂LL

∂w
= 0 =⇒ ∂

∑n

i=1(yi − log(wxi))
2

∂w
= 0

n∑

i=1

xi

wxi

(yi − log(wxi)) = 0 =⇒
n∑

i=1

yi =

n∑

i=1

log(wxi).

d) First, we’ll expand the term from (c) in order to isolate w. Then we’ll provide the algorithm:

n∑

i=1

yi =

n∑

i=1

log(wxi) = n log(w) +

n∑

i=1

log(xi)

n log(w) =

n∑

i=1

(yi − log(xi))

w = exp

(

1

n

n∑

i=1

(yi − log(xi))

)

.

Algorithm 1 Maximum likelihood estimator for w

1: function LIKELIHOOD ESTIMATOR(X,Y)

2: n← Size(X)
3: Sum← 0
4: for i = 1, . . . , n do

5: Sum← Sum+ (yi − log(xi))

6: Sum← 1
n
Sum

7: w = exp(Sum)
8: return w

Good Luck!


