
1
Introduction to Information and Coding Theory June 24, 2019

(Prof. Permuter Haim, Mr. Oron Sabag and Mr. Ben Marinberg)

Final Exam - Moed A

Total time for the exam: 3 hours!

Important: For True / False questions, copy the statement to your notebook and write clearly true or false. You should prove the

statement if true, and provide counterexample otherwise.

1) Optimal outputs distribution (33 Points): Consider the following deterministic channel:

X Y

00

11

2

a) (4 Points) Find the capacity .

b) (5 Points) True/False The optimal input distribution P (x) unique (there is only one such distribution).

c) (6 Points) True/False The optimal output distribution P (y) unique.

We will now show the phenomena above for general memoryless channels.

Define the joint distribution P (θ, x, y) = P (θ)P (x|θ)P (y|x).

d) (3 Points) Put sign between

I(X;Y ) ?? I(X;Y |θ).

e) (5 Points) Find a sufficient and necessary condition for equality above.

f) (10 Points) True/False For memoryless channels, the optimal outputs distribution is unique.

Solution Q1:

a) The capacity is C = 1. First C ≤ 1 since c ≤ log 2|Y| = 1. It can be achieved using PX(1) = PX(2) = 0.5 and

PX(3) = 0.

b) False. Any input distribution with P (x = 0) = 0.5 achieves the capacity.

c) True. The capacity is maxP (x) H(Y ) with a unique maximum when P (y) = 0.5 for y = 0, 1
d) Consider,

I(X;Y ) = H(Y )−H(Y |X, θ) (1)

≥ H(Y |θ)−H(Y |X, θ) (2)

= I(X;Y |θ), (3)

where the first inequality follows from the Markov chain and the inequality following from conditioning reduces entropy.

e) The inequality above holds with equality iff I(Y ; θ) = 0. That is, Y and θ are independent.

f) True. For a memoryless channel P (y|x), consider two input distributions, P1(x) and P2(x), that achieve the capacity. As

we saw in class, define P (x|θ = 1) = P1(x) and P (x|θ = 2) = P2(x).
Consider

C ≥ I(X;Y ) (4)

≥ I(X;Y |θ) (5)

= C, (6)

where the second inequality follows from the previous question, and the equality follows from the assumption that

they input distributions achieve capacity. Thus, have that I(X;Y ) = I(X;Y |θ). Lastly, a necessary condition is Y is

independent of θ meaning that P1(y) = P2(y) (the optimal output distribution is the same for P1(x) and P2(x)).

2) Divergence between Markov processes with the same transition probability, True or False (25 Points): Prove each relation

or provide counter example.

a) (6 Points) Given are two input distributions PX and QX that are transmitted on the same channel given by PY |X . The

corresponding output distributions are denoted by PY and QY .

D(PX ||QX) ≥ D(PY ||QY ). (7)

b) (12 Points) Define a Markov transition probability that, given x1, generates X2, X3, . . . using PX+|X . For example, at

time t = 4, the joint probability given x1 is:

P (x4, x3, x2|x1) = PX+|X(x4|x3)PX+|X(x3|x2)PX+|X(x2|x1)
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There are two distributions PX1

and QX1
that serve as the initial distribution on X1. Is the following true,

D(PXi
||QXi

) ≥ D(PXj
||QXj

) for all i ≤ j. (8)

c) (7 Points) Let f(t) and g(t) be convex functions over t ∈ [0, 1]. Is the function h(t) = max(f(t), g(t)) convex?

Solution Q2:

a) True. Consider

D(PX ||QX) = D(PX,Y ||QX,Y ) (9)

= D(PY ||QY ) +D(PX|Y ||QX|Y |PY ) (10)

≥ D(PY ||QY ). (11)

where the first equality follows from PY |X = QY |X , the second follows from the chain rule and the inequality follows

from the non-negativity of (conditional) divergence.

b) True. The Markov transition can be thought as the channel from the previous question. Using the previous question, we

use induction to show:

D(PXi
||QXi

) ≤ D(PXi+1
||QXi+1

) ≤ D(PXi+2
||QXi+2

) ≤ · · · ≤ D(PXj
||QXj

).

c) True. Without loss of generality, assume that for λt1 + λ̄t2,

h(λt1 + λ̄t2) = f(λt1 + λ̄t2).

Consider the following derivation,

h(λt1 + λ̄t2) = f(λt1 + λ̄t2) (12)

≤ λf(t1) + λ̄f(t2) (13)

≤ λmax{f(t1), g(t1)}+ λ̄max{f(t2), g(t2)} (14)

= λh(t1) + λ̄h(t2). (15)

where the first equality follows from the assumption, the second inequality follows from the convexity of f(·), the third

is trivial and the last equality is by the definition of h(·).

3) Derivatives of neural Network (32 Points):
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2

(b)

Fig. 1

a) (12 Points) Consider the neural network in Fig. (1a) with no bias. Calculate the derivative of w2 for both MSE and cross

entropy cost functions, i.e. ∂CMSE

∂w2
and ∂CCE

∂w2
given x = [0.5, 0.6, 0.1, 0.4]

T
,y = 0, w = [0.25, 0.5, 0.8, 0.3] and σ is the

sigmoid function.

Reminder: The MSE cost is CMSE(y, a) = 1
2 (y − a)2. Binary cross entropy cost is CBCE (y, a) =

−y log(a)− (1− y) log(1− a).

Solution (a):

Note that a=σ(z), and σ′(z)=σ(z)(1-σ(z)).

z = w1x1 + w2x2 + w3x3 + w4x4 = 0.625 (16)
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σ(z) = σ(0.625) = 0.651 (17)

Using the chain rule, we achieve:

∂CMSE

∂w2
=

∂CMSE

∂σ(z)

∂σ(z)

∂z

∂z

∂w2
= (σ(z)− y)σ′(z)x2 = (σ(z)− y)σ(z)(1− σ(z))x2 = 0.0887 (18)

Now using the chain rule with respect to the Cross Entropy cost, we achieve:

∂CCE

∂w2
=

∂CCE

∂σ(z)

∂σ(z)

∂z

∂z

∂w2
=

σ(z)− y

σ(z)(1− σ(z)
σ′(z)x2 =

σ(z)− y

σ(z)(1− σ(z)
σ(z)(1− σ(z))x2 = (σ(z)− y)x2 = 0.375

(19)

b) (15 Points) Now we introduce you to two new layers of neural networks, 1D convolution and MaxPoolingβ . 1D convolution

pass the input layer in a FIR filter of size M, without zero padding. For input x = [x(1), x(2), .., x(N)]T and filter

coefficients α = [α(0), α(1), .., α(M − 1)], the output y is defined as:

y(k) =

M−1
∑

i=0

x(k + i) · α(i) k = 1, 2, .., N −M + 1. (20)

MaxPoolingβ just pools the maximum value of β consecutive elements. For input x = [x(1), x(2), .., x(N)]T and some

β, the output y is defined as:

y(k) = max{x(k), x(k + 1), .., x(k + β − 1)} k = 1, 2, .., N − β + 1. (21)

Consider the neural network in Fig. (1b) with MSE cost and no bias, calculate the derivative of w2 , i.e. ∂CMSE

∂w2
, given

x = [0.5, 0.6, 1, 0.1, 0.4]T , y = 0, α = [0.25, 0.5, 0.25], β = 2 and w = [0.25, 0.5].

Solution (b):

Step 1: Calculate feedforward. M=3, β = 2, N=5.

yFIR(1) = x(1)α(0) + x(2)α(1) + x(3)α(2) = 0.675 (22)

yFIR(2) = x(2)α(0) + x(3)α(1) + x(4)α(2) = 0.675 (23)

yFIR(3) = x(3)α(0) + x(4)α(1) + x(5)α(2) = 0.400 (24)

(25)

Calculations result in: yFIR = [0.675, 0.675, 0.4]T

Now calculate the output of the Maxpooling:

yM1 = max{0.675, 0.675} = 0.675 (26)

yM2 = max{0.675, 0.400} = 0.675 (27)

(28)

Calculations result in: yMaxpooling = [0.675, 0.675]T

z = w1yM1 + w2yM2 = 0.506 (29)

σ(z) = σ(0.506) = 0.623 (30)

(31)

Step 2: Calculate the derivative using section (a):

∂CMSE

∂w2
=

∂CMSE

∂σ(z)

∂σ(z)

∂z

∂z

∂w2
= (σ(z)− y)σ(z)(1− σ(z)yM2 = 0.098 (32)

c) (5 Points) A soft max with D input z = [z(1), .., z(D)] and N outputs is

a(j) =
ez(j)

∑D
n=1 ez(n)

for j = 1, 2, ...., N. (33)
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Find

∂a(i)
∂z(j) and the sign of the derivative (positive or negative), i.e., sign

(

∂a(i)
∂z(j)

)

.

Solution (c):

We will split the answer into 2 cases:

i=j:

∂a(j)

∂z(j)
=

ez(j)(
∑D

n=1 ez(n))− e2z(j)

(
∑D

n=1 ez(n))2
= ez(j)

∑D
n=1 ez(n) − ez(j)

(
∑D

n=1 ez(n))2
(34)

(35)

i 6=j:

∂a(i)

∂z(j)
=

−ez(i)ez(j)

(
∑D

n=1 ez(n))2
(36)

(37)

Note that ez(j) > 0 and that
∑D

n=1 ez(n) > ez(j) > 0 resulting in a positive derivative for i=j and a negative derivative for

i 6=j. This makes sense since softmax represents probability. If z(j) increases then its probability will rise. Since probability

adds up to 1, the other probabilities will decrease, resulting in a negative derivative.

4) K-means (15 Points) Perform K-means iterations by hand on the dataset given below. Circles are data points and the two

initial cluster centers are squares. Draw the cluster centers and the decision boundaries that define each cluster. If no points

belong to a particular cluster, assume its center does not change. Use as many of the pictures as you need for convergence.

Solution (K-means):

Using 3 iterations of the K-means algorithm studied in class we achieve:
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Note that Squares resemble the initial centroid position, the colored dots (green/blue) resemble the assignment of a dot to a

specific centroid, the X’s resemble the estimation of the new centroid position according to the dots average location and the

gray lines resemble the decision boundary derived using minimal euclidean distance. After 3 iterations the centroids will not

change anymore, meaning the algorithm is done.

Good Luck!


