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Introduction to Information and Coding Theory November 15, 2017
(Prof. Permuter Haim, Mr. Oron Sabag and Mr. Iddo Gattengo)

Final Exam - Moed B
Total time for the exam: 3 hours!

Important: ForTrue / False questions, copy the statement to your notebook and write clearly true or false. You should prove the
statement if true, and provide counterexample otherwise.

1) True or False (24 Points):
a) True/False: For two random variables,X and Y , H(f(X,Y )) ≤ H(g(X)) + H(h(Y )), wheref , g, h are arbitrary

functions. (6 pts)
Solution: False.
Let us assume that:f(X,Y ) = X, g(X) = 0, h(Y ) = 0.
Hence:H(f(X,Y )) = H(X) ≥ 0 = H(0) +H(0) = H(g(X)) +H(h(Y )).

b) Consider a Gaussian channel where the input, X, has a powerconstraint P, the noise,Z ∼ N(0, 1) and the output is
Y = X + Z. The outputY is fed through a functionfi(y) = yi wherei is an integer. The capacity of this channel is
denoted byCi. Complete<,>,= betweenC2 andC4, prove your answer. (6 pts)
Solution: C2 = C4.
Notice that if we knowf2(y) then we knowf4(y), and vice versa. Therefore:

max
f(x):E(X2)≤P

I(X;Y 2) = max
f(x):E(X2)≤P

I(X;Y 4) (1)

c) Consider a clean channel with|X | inputs and outputs (Fig. 1). Two systems are defined as follows:
System A: At each time, a random variableZ ∼ Unif(1, . . . , |X |) determines how many links can be used at the next
channel use. This random variable is known to the encoder andthe decoder. The capacity of this system is denoted by
CA.
System B: In this system, there is a clean channel but with|X ′| = 1+···+|X |

|X | inputs (the average amount of inputs) at
all times. The capacity of this channel is denoted byCB .

True/False: The capacity of system B is larger then the capacity of system A, i.e. CB ≥ CA.(12 pts)
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Fig. 1: Clean channel with|X | inputs.
Solution: True.
The capacity of a clean channel with|X | inputs islog |X |.
Applying it to System B we get:

CB = log |X ′|

= log(
1 + · · ·+ |X |

|X |
)

= log[E[Z]]

On the other hand:CA = max
p(x)

I(X;Y |Z), while:

I(X;Y |Z) =

|X |
∑

i=1

P (Z = i)I(X;Y |Z = i)

therefore,

CA =
1

|X |

|X |
∑

i=1

log(i)

= E[log(Z)]

(a)

≤ log[E[Z]]

= CB



2
Where (a) follows from Jensen’s inequality.

2) Constrained Markov chain (24 Points):
A random process,X1, X2, . . . is a Markov chain if it has the Markov propertyXi − Xi−1 − Xi−2 for all i ≥ 3. In this
question, the Markov chainX1, X2, . . . takes values from a binary alphabet,X = {0, 1}, and does not contain two consecutive
ones (that is,′11′ is not valid). The conditional probability,PXi|Xi−1

, of the Markov chain is given by

T =

(

1− p p
1 0

)

,

for all i ≥ 2, wherep ∈ [0, 1]. The matrix rows correspond toXi−1 and the matrix columns correspond toXi, for example,
P (Xi = 1|Xi−1 = 0) = p. The distribution ofX1 is to be defined later.

a) Explain why the Markov chain does not contain consecutiveones.
Solution:
From the conditional probability matrix:P (Xi = 1|Xi−1 = 1) = 0.

b) The stationary distribution of a Markov chain is defined asa probability vector that solvesvT = v. Find the stationary
distribution of this Markov chain as a function ofp.
Solution:
Assumingv =

[

v1 v2
]

we get:v1 + v2 = 1, andv1(1 + p) = 1. Hence:v =
[ 1

1+p
p

1+p

]

.
- From now on, assume that X1 is distributed according to v that you found in (b).

c) ComputeP (X2 = 0), P (X3 = 0) andP (X7 = 0) as a function ofp.
Solution:
In this case, the probability vector is distributed the samefor all i ≥ 1, for:
v1T = v2, v1 = v2 andv2T = v3, v2 = v3 etc.
Hence,P (X2 = 0) = P (X3 = 0) = P (X7 = 0) = v1 = 1

1+p
.

d) (True/False) The entropy rate is defined asH(X ) = limn→∞
1
n
H(Xn). Is it true thatH(X ) = H(X2|X1)?

Solution: True

H(X )
(a)
= lim

n→∞

1

n
H(Xn)

(b)
= lim

n→∞

1

n

n
∑

i=1

H(Xi|X
i−1)

(c)
= lim

n→∞

1

n
H(X1) +

1

n

n
∑

i=2

H(Xi|Xi−1)

= lim
n→∞

1

n
H(X1) +

1

n

n
∑

i=2

H(X2|X1)

= lim
n→∞

1

n
H(X1) +

n− 1

n
H(X2|X1)

= H(X2|X1)

Where (a)-(c) follow from: chain rule, Markov property and stationary distibution, respectively.
e) Compute the entropy rate of the Markov chain as a function of p. (The answer should not contain a limit)

Solution:
From previous section we know that:

H(X ) = H(X2|X1)

= P (X1 = 0)H(X2|X1 = 0) + P (X1 = 1)H(X2|X1 = 1)

= v1H(p) + v2 · 0

=
H(p)

1 + p

f) In order to maximize the entropy rate, you can now optimizethe parameterp. Does the optimal parameter satisfyp = 0.5,
p < 0.5 or p > 0.5? (You don’t have to solve the maximization problem but you should prove your answer.)

* Roughly speaking, the amount of sequences of lengthn and without′11′ is 2nH(X ). In magnetic storage, such as standard
hard disk, it is useful to encode data into constrained sequences (in order to do decrease errors appearances) so the larger
the entropy so the better it is.
Solution:
H(p) is symmetric aroundp = 0.5. 1 + p is monotonically increasing. Hence we obviously preferp ≤ 0.5. Now
substitutingp = 0.5 we have:H(X ) = 2

3 . Let us check another input a bit smaller than 0.5, e.g.p = 0.4, we have
H(X ) = 0.694. Now we may infer thatp < 0.5.

3) Polarization and the idea of polar codes (28 Points): The question is about polarization effect in memoryless channels that
can lead to simple coding schemes that achieve the capacity which are called polar codes.
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a) Consider the channel in Fig. 2 where two parallel binary erasure channels can be used at once (the input isX = (X1, X2)).

The inputs alphabets are binary, so thatY1 andY2 are the outputs of aBEC(p) with inputsX1 andX2, respectively.

BEC(p)

BEC(p)

X1

X2

Y1

Y2

Fig. 2: Two parallel binary erasure channels
Compute the capacity of this channel, namely,

max
p(x1,x2)

I(X1, X2;Y1, Y2). (2)

What is the input distributionp(x1, x2) that achieves the capacity?
Solution:

I(X1, X2;Y1, Y2) = H(Y1, Y2)−H(Y1, Y2|X1, X2)

= H(Y1) +H(Y2|Y1)− (H(Y1|X1, X2) +H(Y2|X1, X2, Y1))

= H(Y1) +H(Y2|Y1)− (H(Y1|X1) +H(Y2|X2))

= H(Y1)−H(Y1|X1) +H(Y2|Y1)−H(Y2|X2)

≤ H(Y1)−H(Y1|X1) +H(Y2)−H(Y2|X2)

= I(X1, Y1) + I(X2, Y2)

While equality holds ifY1 andY2 are independent, that holds ifX1 andX2 are independent.
As we saw in class, the capacity of a singleBEC(p) with input X and outputY is given by
C = (1− p)sup

Px

H(X) = 1− p, with X ∼ Bern(0.5) achieving it.

Hence the capacity of the described channel is given by:

C = max
p(x1,x2)

I(X1, Y1) + I(X2, Y2)

= max
p(x1)

I(X1, Y1) + max
p(x2)

I(X2, Y2)

= 2(1− p)

which is achieved byX1 ∼ Bern(0.5), X2 ∼ Bern(0.5) and independentX1 andX2.
b) Consider the system in Fig. 3, where addition is modulo2:

BEC(p)

BEC(p)

V

U X1

X2

Y1

Y2

Fig. 3: Two parallel binary erasure channels with modified inputs
(

X1

X2

)

=

(

1 0
1 1

)(

U

V

)

Compute the capacity of the new channel, i.e.max
p(u,v)

I(U, V ;Y1, Y2).

What is thep(u, v) that achieves the capacity?
Solution: U andV are functions ofX1,X2. As a result,

I(U, V ;Y1, Y2) ≤ I(X1, X2;Y1, Y2). (3)

With equality if X1 and X2 are functions ofU ,V (We know thatU = X1, andX2 = U ⊕ V ). Now, the maximum
mutual information of the new channel equals the capacity ofthe previous channel if we guarantee again thatX1,X2 are
independent and both are∼ Bern(0.5), as it was shown previously.V ∼ Bern(0.5) establishes independence between
X1,X2, and thatX2 ∼ Bern(0.5). Of course,U ∼ Bern(0.5) establishesX1 ∼ Bern(0.5) sinceU = X1.
Hence the new capacity isC = 2(1− p), again.
Next, the channel is decomposed into two parallel channels as appears in Fig. 4. The input of Channel 1 is U and
its output is (Y1, Y2, V ). The input of Channel 2 is V and its output is (Y1, Y2).
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Channel 1

Channel 2
(  ,  )
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Y2

Fig. 4: Two new channels

c) Compute the expressionsI(U ;Y1, Y2, V ) andI(V ;Y1, Y2) with respect to thep(u, v) that achieves the maximum in (b).
What is the sum of the expressions you computed?
Solution:
Channel 1:

I(U ;Y1, Y2, V ) = I(U ;Y1) + I(U ;Y2|Y1) + I(U ;V |Y1, Y2)

= (1− p)H(U) +H(U |Y1)−H(U |Y1, Y2) +H(U |Y1, Y2)−H(U |Y 1, Y 2, V )

= (1− p)H(U) +H(U |Y1)−H(U |Y1, Y2, V )

While:

H(U/Y1) = P (y1 =′?′)H(U |y1 =′?′) = pH(U)

H(U |Y1, Y2, V ) = p(y1 =′?′, y2 =′?′)H(U |V ) = p2H(U)

Hence:

I(U ;Y1, Y2, V ) = (1− p)H(U) + pH(U)− p2H(U)

= H(U)− p2H(U)

= H(U)(1− p2)

Substitutingp(u) = 0.5 we have:

I(U ;Y1, Y2, V ) = 1− p2

Channel 2:

I(V ;Y1, Y2) = I(V ;Y1) + I(V ;Y2|Y1)

= H(V )−H(V |Y1) +H(V |Y1)−H(V |Y1, Y2)

= H(V )−H(V |Y1, Y2)

= H(V )− [p(y1 6=′?′, y2 6=′?′)H(V |y1 6=′?′, y2 6=′?′)

+ p(y1 6=′?′, y2 =′?′)H(V |y1 6=′?′, y2 =′?′)

+ p(y1 =′?′, y2 6=′?′)H(V |y1 =′?′, y2 6=′?′)

+ p(y1 =′?′, y2 6=′?′)H(V |y1 =′?′, y2 6=′?′)]

= H(V )− [0 + p(1− p)H(V ) + p(1− p) ·min{H(V ), H(U)}+ p2H(V )]

= H(V )− p(1− p)[H(V ) +min{H(V ), H(U)}]− p2H(V )

Substitutingp(u) = 0.5 andp(v) = 0.5 we get:

I(V ;Y1, Y2) = 1− 2p(1− p)− p2

= (1− p)2

Now let us sum both:

I(U ;Y1, Y2, V ) + I(V ;Y1, Y2) = 1− p2 + (1− p)2

= 2(1− p)

d) Compare the mutual information of Channels1 and2 with the capacity of a binary erasure channel (that is, write<, >
or = with simple proof).

*For largen, repeating this decompositionn times, ends up innc clean channels and inn(1− c) totally noisy channels. This
is the main idea of polar codes, which achieves capacity.

Solution:
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As mentioned:

C(BEC(p)) = (1− p) · sup
Px

H(X)

= 1− p

Channel 1:

I(U ;Y1, Y2, V ) = 1− p2

= (1− p)(1 + p)

which is greater thanC(BEC(p)) because(1 + p) > 1.

Channel 2:

I(V ;Y1, Y2) = (1− p)2

where(1− p) < 1, as a result the mutual information is less thanC(BEC(p)).

4) Logistic Regression (24 Points):
Recall the sigmoid function,σ(z) = 1

1+e−z . The logistic regression classifier, that we’ve learned in class, is a binary classifier.
The estimated probabilitŷp(x(i); θ) is defined as

p̂(y(i) = 1|x(i); θ, b) = hθ,b(x
(i)) = f(θ⊤x(i) + b) (-13)

wheref(z) is usually the sigmoid functionσ(z) = 1
1+e−z .

a) Assume that{(x(i), y(i))}mi=1 is a set of i.i.d samples Write the estimated probability of the entire set, i.e., write
p̂
(

y(1), . . . , y(m)|x(1), . . . , x(m)
)

in terms of{(x(i), y(i))}mi=1 andhθ,b(·).
Solution:

p̂
(

y(1), . . . , y(m)|x(1), . . . , x(m)
)

=

m
∏

i=1

hθ,b(x
(i))y

(i)
(

1− hθ,b(x
(i))

)1−y(i)

b) Is thesigmoid function σ(z) convex, concave or none? Prove your claim.
Solution: The sigmoid function is neither concave nor convex.
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By drawing the sigmoid, it can be deduced that the function isnot convex and not concave. Formally, a function is convex
if λσ(z1) + λ̄σ(z2) ≥ σ(λz1 + λ̄z2). Setz1 = 0, z2 = 10, λ = 0.8 and the inequality fails. Similarly, it is not concave.
Usez2 = −10.



6
c) Assume that the sigmoid function is replaced with the following piecewise linear function

f(z) =











0 if z < −0.5

0.5 + x if − 0.5 ≤ z ≤ 0.5

1 if z > 0.5

(-12)

Let x = (x1, x2) be a binary vector, namely,x1 ∈ {0, 1}, x2 ∈ {0, 1}. Can you findθ1, θ2 and b such thatf(θ⊤x + b)
is the logical or betweenx1 andx2? If yes, do it. If no, prove it doesn’t exist.Hint: recall thatθ⊤x = θ1x1 + θ2x2.
Solution: Setθ1 = θ2 = 1 andb = −0.5. Then we have

f(x1 + x2 +−0.5) =

{

0 if (x1, x2) = (0, 0)

1 otherwise

d) Can you findθ, b such thatf(θ⊤x + b) is the logical exclusive or (XOR) betweenx1, x2? If yes, do it. If no, prove it
doesn’t exist.
Solution: Such parameters doesn’t exist.

-0.5 0 0.5 1 1.5
-0.5

0

0.5

1

1.5

x1 XOR x2 = 1
x1 XOR x2 = 0

We’ve learned that the logistic regression is a linear classifier - it defines a separating hyperplane withθ and b, and the
classification is according to the sign of the inner product.Our function resembles sigmoid in that sense. There are noθ
andb that will perform exclusive or because there is no such hyperplane in this case.

Good Luck!


