1) **True or False (24 Points):**

a) **True/False:** For two random variables, X and Y, $H(f(X,Y)) \leq H(g(X)) + H(h(Y))$, where f, g, h are arbitrary functions. (6 pts)

Solution: False.

Let us assume that:

- $f(X,Y) = X$
- $g(X) = 0$
- $h(Y) = 0$

Hence:

$$H(f(X,Y)) = H(X) \geq 0 = H(0) + H(0) = H(g(X)) + H(h(Y))$$

b) Consider a Gaussian channel where the input, X, has a power constraint P, the noise, $Z \sim N(0,1)$ and the output is $Y = X + Z$. The output Y is fed through a function $f_i(y) = y^i$ where i is an integer. The capacity of this channel is denoted by C_i. Complete <, >, = between C_2 and C_4, prove your answer. (6 pts)

Solution: $C_2 = C_4$.

Notice that if we know $f_2(y)$ then we know $f_4(y)$, and vice versa. Therefore:

$$\max_{f(x):E(X^2)\leq P} I(X;Y^2) = \max_{f(x):E(X^2)\leq P} I(X;Y^4)$$

(1)

c) Consider a clean channel with $|\mathcal{X}|$ inputs and outputs (Fig. 1). Two systems are defined as follows:

- **System A:** At each time, a random variable $Z \sim \text{Unif}(1, \ldots, |\mathcal{X}|)$ determines how many links can be used at the next channel use. This random variable is known to the encoder and the decoder. The capacity of this system is denoted by C_A.

- **System B:** In this system, there is a clean channel but with $|\mathcal{X}'| = \frac{1 + \cdots + |\mathcal{X}|}{|\mathcal{X}|}$ inputs (the average amount of inputs) at all times. The capacity of this channel is denoted by C_B.

True/False: The capacity of system B is larger than the capacity of system A, i.e. $C_B \geq C_A$. (12 pts)

Solution: True.

The capacity of a clean channel with $|\mathcal{X}|$ inputs is $\log |\mathcal{X}|$. Applying it to System B we get:

$$C_B = \log |\mathcal{X}'| = \log \left(\frac{1 + \cdots + |\mathcal{X}|}{|\mathcal{X}|} \right) = \log [E[Z]]$$

On the other hand: $C_A = \max_{p(x)} I(X;Y|Z)$, while:

$$I(X;Y|Z) = \sum_{i=1}^{|\mathcal{X}|} P(Z = i) I(X;Y|Z = i)$$

therefore,

$$C_A = \frac{1}{|\mathcal{X}|} \sum_{i=1}^{|\mathcal{X}|} \log(i) = E[\log(Z)] \leq \log[E[Z]] = C_B$$
2) **Constrained Markov chain (24 Points):**
A random process, \(X_1, X_2, \ldots \) is a Markov chain if it has the Markov property \(X_i - X_{i-1} - X_{i-2} \) for all \(i \geq 3 \). In this question, the Markov chain \(X_1, X_2, \ldots \) takes values from a binary alphabet, \(\mathcal{A} = \{0, 1\} \), and does not contain two consecutive ones (that is, '11' is not valid). The conditional probability, \(P_{X_i|X_{i-1}} \), of the Markov chain is given by
\[
T = \begin{pmatrix}
1 - p & p \\
1 & 0
\end{pmatrix},
\]
for all \(i \geq 2 \), where \(p \in [0, 1] \). The matrix rows correspond to \(X_{i-1} \) and the matrix columns correspond to \(X_i \), for example, \(P(X_1 = 1|X_{i-1} = 0) = p \). The distribution of \(X_1 \) is to be defined later.

a) Explain why the Markov chain does not contain consecutive ones.

Solution:
From the conditional probability matrix: \(P(X_1 = 1|X_{i-1} = 1) = 0 \).

b) The stationary distribution of a Markov chain is defined as a probability vector that solves \(vT = v \). Find the stationary distribution of this Markov chain as a function of \(p \).

Solution:
Assuming \(v = [v_1 \ v_2] \) we get: \(v_1 + v_2 = 1, \) and \(v_1(1+p) = 1 \). Hence: \(v = \begin{pmatrix} \frac{1}{1+p} \\ \frac{p}{1+p} \end{pmatrix} \).

- From now on, assume that \(X_1 \) is distributed according to \(v \) that you found in (b).

c) Compute \(P(X_2 = 0), P(X_3 = 0) \) and \(P(X_7 = 0) \) as a function of \(p \).

Solution:
In this case, the probability vector is distributed the same for all \(i \geq 1 \), for:
\[v_1T = v_2, v_1 = v_2 \] and \(v_2T = v_3, v_2 = v_3 \) etc.

Hence, \(P(X_2 = 0) = P(X_3 = 0) = P(X_7 = 0) = v_1 = \frac{1}{1+p} \).

d) (True/False) The entropy rate is defined as \(H(\mathcal{A}) = \lim_{n \to \infty} \frac{1}{n} H(X^n) \). Is it true that \(H(\mathcal{A}) = H(X_2|X_1) \)?

Solution: True
\[
H(\mathcal{A}) = \lim_{n \to \infty} \frac{1}{n} H(X^n) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} H(X_i|X_i^{-1}) = \lim_{n \to \infty} \frac{1}{n} H(X_1) + \frac{1}{n} \sum_{i=2}^{n} H(X_i|X_{i-1}) = \lim_{n \to \infty} \frac{1}{n} H(X_1) + \frac{1}{n} \sum_{i=2}^{n} H(X_2|X_1) = \lim_{n \to \infty} \frac{1}{n} H(X_1) + \frac{n-1}{n} H(X_2|X_1) = H(X_2|X_1)
\]

Where (a)-(c) follow from: chain rule, Markov property and stationary distribution, respectively.

e) Compute the entropy rate of the Markov chain as a function of \(p \). (The answer should not contain a limit)

Solution:
From previous section we know that:
\[
H(\mathcal{A}) = H(X_2|X_1)
= P(X_1 = 0)H(X_2|X_1 = 0) + P(X_1 = 1)H(X_2|X_1 = 1)
= v_1 H(p) + v_2 \cdot 0
= \frac{H(p)}{1+p}
\]
f) In order to maximize the entropy rate, you can now optimize the parameter \(p \). Does the optimal parameter satisfy \(p = 0.5 \), \(p < 0.5 \) or \(p > 0.5 \)? (You don’t have to solve the maximization problem but you should prove your answer.)

* Roughly speaking, the amount of sequences of length \(n \) and without '11' is \(2^n H(\mathcal{A}) \). In magnetic storage, such as standard hard disk, it is useful to encode data into constrained sequences (in order to do decrease errors appearances) so the larger the entropy so the better it is.

Solution:
\(H(p) \) is symmetric around \(p = 0.5 \). \(1 + p \) is monotonically increasing. Hence we obviously prefer \(p \leq 0.5 \). Now substituting \(p = 0.5 \) we have: \(H(\mathcal{A}) = \frac{2}{3} \). Let us check another input a bit smaller than 0.5, e.g. \(p = 0.4 \), we have \(H(\mathcal{A}) = 0.694 \). Now we may infer that \(p < 0.5 \).

3) **Polarization and the idea of polar codes (28 Points):** The question is about polarization effect in memoryless channels that can lead to simple coding schemes that achieve the capacity which are called polar codes.
a) Consider the channel in Fig. 2 where two parallel binary erasure channels can be used at once (the input is $X = (X_1, X_2)$). The inputs alphabets are binary, so that Y_1 and Y_2 are the outputs of a BEC(p) with inputs X_1 and X_2, respectively.

\[I(X_1, X_2; Y_1, Y_2) = H(Y_1, Y_2) - H(Y_1, Y_2|X_1, X_2) \]
\[= H(Y_1) + H(Y_2|Y_1) - (H(Y_1|X_1, X_2) + H(Y_2|X_1, X_2, Y_1)) \]
\[= H(Y_1) + H(Y_2|Y_1) - (H(Y_1|X_1) + H(Y_2|X_2)) \]
\[= H(Y_1) - H(Y_1|X_1) + H(Y_2|X_2) \]
\[\leq H(Y_1) - H(Y_1|X_1) + H(Y_2) - H(Y_2|X_2) \]
\[= I(X_1, Y_1) + I(X_2, Y_2) \]

While equality holds if Y_1 and Y_2 are independent, that holds if X_1 and X_2 are independent.

As we saw in class, the capacity of a single BEC(p) with input X and output Y is given by $C = (1 - p) \sup H(X) = 1 - p$, with $X \sim \text{Bern}(0.5)$ achieving it.

Hence the capacity of the described channel is given by:

\[C = \max_{p(x_1, x_2)} I(X_1, Y_1) + I(X_2, Y_2) \]
\[= \max_{p(x_1)} I(X_1, Y_1) + \max_{p(x_2)} I(X_2, Y_2) \]
\[= 2(1 - p) \]

which is achieved by $X_1 \sim \text{Bern}(0.5), X_2 \sim \text{Bern}(0.5)$ and independent X_1 and X_2.

b) Consider the system in Fig. 3, where addition is modulo 2:

\[\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} U \\ V \end{pmatrix} \]

Compute the capacity of the new channel, i.e. $\max_{p(u, v)} I(U, V; Y_1, Y_2)$.

What is the $p(u, v)$ that achieves the capacity?

Solution: U and V are functions of X_1, X_2. As a result,

\[I(U, V; Y_1, Y_2) \leq I(X_1, X_2; Y_1, Y_2). \]

With equality if X_1 and X_2 are functions of U, V (We know that $U = X_1$, and $X_2 = U \oplus V$). Now, the maximum mutual information of the new channel equals the capacity of the previous channel if we guarantee again that X_1, X_2 are independent and both are $\sim \text{Bern}(0.5)$, as it was shown previously. $V \sim \text{Bern}(0.5)$ establishes independence between X_1, X_2, and that $X_2 \sim \text{Bern}(0.5)$. Of course, $U \sim \text{Bern}(0.5)$ establishes $X_1 \sim \text{Bern}(0.5)$ since $U = X_1$.

Hence the new capacity is $C = 2(1 - p)$, again.

Next, the channel is decomposed into two parallel channels as appears in Fig. 4. The input of Channel 1 is U and its output is (Y_1, Y_2, V). The input of Channel 2 is V and its output is (Y_1, Y_2).
c) Compute the expressions $I(U; Y_1, Y_2, V)$ and $I(V; Y_1, Y_2)$ with respect to the $p(u, v)$ that achieves the maximum in (b).

Solution:

Channel 1:

$$I(U; Y_1, Y_2, V) = I(U; Y_1) + I(U; Y_2|Y_1) + I(U; V|Y_1, Y_2)$$

$$= (1 - p)H(U) + H(U|Y_1) - H(U|Y_1, Y_2) + H(U|Y_1, Y_2) - H(U|Y_1, Y_2, V)$$

$$= (1 - p)H(U) + H(U|Y_1) - H(U|Y_1, Y_2, V)$$

While:

$$H(U|Y_1) = P(y_1 = \cdot \cdot \cdot)H(U|y_1 = \cdot \cdot \cdot) = pH(U)$$

$$H(U|Y_1, Y_2, V) = p(y_1 = \cdot \cdot \cdot, y_2 = \cdot \cdot \cdot)H(U|V) = p^2H(U)$$

Hence:

$$I(U; Y_1, Y_2, V) = (1 - p)H(U) + pH(U) - p^2H(U)$$

$$= H(U) - p^2H(U)$$

$$= H(U)(1 - p^2)$$

Substituting $p(u) = 0.5$ we have:

$$I(U; Y_1, Y_2, V) = 1 - p^2$$

Channel 2:

$$I(V; Y_1, Y_2) = I(V; Y_1) + I(V; Y_2|Y_1)$$

$$= H(V) - H(V|Y_1) + H(V|Y_1) - H(V|Y_1, Y_2)$$

$$= H(V) - H(V|Y_1, Y_2)$$

$$= H(V) - [p(y_1 \neq \cdot \cdot \cdot, y_2 \neq \cdot \cdot \cdot)H(V|y_1 \neq \cdot \cdot \cdot, y_2 \neq \cdot \cdot \cdot)$$

$$+ p(y_1 = \cdot \cdot \cdot, y_2 = \cdot \cdot \cdot)H(V|y_1 = \cdot \cdot \cdot, y_2 = \cdot \cdot \cdot)$$

$$+ p(y_1 = \cdot \cdot \cdot, y_2 \neq \cdot \cdot \cdot)H(V|y_1 = \cdot \cdot \cdot, y_2 \neq \cdot \cdot \cdot)$$

$$+ p(y_1 \neq \cdot \cdot \cdot, y_2 \neq \cdot \cdot \cdot)H(V|y_1 \neq \cdot \cdot \cdot, y_2 \neq \cdot \cdot \cdot)]$$

$$= H(V) - [0 + p(1-p)H(V) + p(1-p)\min\{H(V), H(U)\} + p^2H(V)]$$

$$= H(V) - p(1-p)[H(V) + \min\{H(V), H(U)\}] - p^2H(V)$$

Substituting $p(u) = 0.5$ and $p(v) = 0.5$ we get:

$$I(V; Y_1, Y_2) = 1 - 2p(1-p) - p^2$$

$$= (1-p)^2$$

Now let us sum both:

$$I(U; Y_1, Y_2, V) + I(V; Y_1, Y_2) = 1 - p^2 + (1-p)^2$$

$$= 2(1-p)$$

d) Compare the mutual information of Channels 1 and 2 with the capacity of a binary erasure channel (that is, write $<$, $>$ or $=$ with simple proof).

*For large n, repeating this decomposition n times, ends up in nc clean channels and in $n(1-c)$ totally noisy channels. This is the main idea of polar codes, which achieves capacity.

Solution:
As mentioned:

\[C(BEC(p)) = (1 - p) \cdot \sup_{P_x} H(X) = 1 - p \]

Channel 1:

\[I(U;Y_1,Y_2,V) = 1 - p^2 = (1 - p)(1 + p) \]

which is greater than \(C(BEC(p)) \) because \((1 + p) > 1\).

Channel 2:

\[I(V;Y_1,Y_2) = (1 - p)^2 \]

where \((1 - p) < 1\), as a result the mutual information is less than \(C(BEC(p)) \).

4) Logistic Regression (24 Points):

Recall the sigmoid function, \(\sigma(z) = \frac{1}{1+e^{-z}} \). The logistic regression classifier, that we’ve learned in class, is a binary classifier. The estimated probability \(\hat{p}(x^{(i)};\theta) \) is defined as

\[\hat{p}(y^{(i)} = 1|x^{(i)};\theta,b) = h_{\theta,b}(x^{(i)}) = f(\theta^T x^{(i)} + b) \]

(-13)

where \(f(z) \) is usually the sigmoid function \(\sigma(z) = \frac{1}{1+e^{-z}} \).

a) Assume that \(\{(x^{(i)},y^{(i)})\}_{i=1}^{m} \) is a set of i.i.d samples Write the estimated probability of the entire set, i.e., write \(\hat{p}(y^{(1)},\ldots,y^{(m)}|x^{(1)},\ldots,x^{(m)}) \) in terms of \(\{(x^{(i)},y^{(i)})\}_{i=1}^{m} \) and \(h_{\theta,b}(\cdot) \).

Solution:

\[\hat{p}(y^{(1)},\ldots,y^{(m)}|x^{(1)},\ldots,x^{(m)}) = \prod_{i=1}^{m} h_{\theta,b}(x^{(i)})^{y^{(i)}} (1 - h_{\theta,b}(x^{(i)}))^{1-y^{(i)}} \]

b) Is the sigmoid function \(\sigma(z) \) convex, concave or none? Prove your claim.

Solution: The sigmoid function is neither concave nor convex.

By drawing the sigmoid, it can be deduced that the function is not convex and not concave. Formally, a function is convex if \(\lambda \sigma(z_1) + \lambda \sigma(z_2) \geq \sigma(\lambda z_1 + \lambda z_2) \). Set \(z_1 = 0, z_2 = 10, \lambda = 0.8 \) and the inequality fails. Similarly, it is not concave. Use \(z_2 = -10 \).
c) Assume that the sigmoid function is replaced with the following piecewise linear function

\[
f(z) = \begin{cases}
0 & \text{if } z < -0.5 \\
0.5 + x & \text{if } -0.5 \leq z \leq 0.5 \\
1 & \text{if } z > 0.5
\end{cases}
\]

(12)

Let \(x = (x_1, x_2) \) be a binary vector, namely, \(x_1 \in \{0, 1\}, x_2 \in \{0, 1\} \). Can you find \(\theta_1, \theta_2 \) and \(b \) such that \(f(\theta^\top x + b) \) is the logical or between \(x_1 \) and \(x_2 \)? If yes, do it. If no, prove it doesn’t exist. **Hint:** recall that \(\theta^\top x = \theta_1 x_1 + \theta_2 x_2 \).

Solution: Set \(\theta_1 = \theta_2 = 1 \) and \(b = -0.5 \). Then we have

\[
f(x_1 + x_2 + -0.5) = \begin{cases}
0 & \text{if } (x_1, x_2) = (0, 0) \\
1 & \text{otherwise}
\end{cases}
\]

d) Can you find \(\theta, b \) such that \(f(\theta^\top x + b) \) is the logical exclusive or (XOR) between \(x_1, x_2 \)? If yes, do it. If no, prove it doesn’t exist.

Solution: Such parameters doesn’t exist.

We’ve learned that the logistic regression is a linear classifier - it defines a separating hyperplane with \(\theta \) and \(b \), and the classification is according to the sign of the inner product. Our function resembles sigmoid in that sense. There are no \(\theta \) and \(b \) that will perform exclusive or because there is no such hyperplane in this case.

Good Luck!