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Introduction to Information and Coding Theory June 19, 2018
(Prof. Permuter Haim, Mr. Oron Sabag and Mr. Iddo Gattengo)

Final Exam - Moed A
Total time for the exam: 3 hours!

Important: For True / False questions, copy the statement to your notebook and write clearly true or false. You should prove the
statement if true, and provide counterexample otherwise.

1) Multipath Gaussian channel. (24 Points)
Consider a Gaussian noise channel of power constraint P , where the signal takes two different paths and the received noisy
signals, Y1 and Y2, are feed into a finite impulse response (FIR) filter which coherently combines the input signals, namely,
Y = a · Y1 + b · Y2, where a, b ∈ R. The system model is shown in the figure below.
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Fig. 1: Channel model

We assume that Z1 and Z2 are jointly Gaussian, with zero means, and covariance matrix

K =

[
N Nρ
Nρ N

]
.

a) Given a, b ∈ R, find the capacity C(a, b, ρ) of the channel described above.
Solution:
We have Y1 = X + Z1 and Y2 = X + Z2. Also, Y = (a + b) ·X + aZ1 + bZ2. Using the results derived in the class,
we know that the capacity of this Gaussian channel is given by

C(a, b, ρ) =
1

2
log

(
1 +

var [(a+ b) ·X]

var [aZ1 + bZ2]

)
=

1

2
log

(
1 +

(a+ b)2

a2 + b2 + 2abρ

P

N

)
.

b) Evaluate your result in the previous item for ρ = 0,−1, and 1? Explain your results when a = b.
Solution:
We have:

C(a, b, 0) =
1

2
log

(
1 +

(a+ b)2

a2 + b2
P

N

)
,

C(a, b, 1) =
1

2
log

(
1 +

P

N

)
,

C(a, b,−1) =
1

2
log

(
1 +

(a+ b)2

(a− b)2
P

N

)
.

Also, when a = b we get

C(a, a, 0) =
1

2
log

(
1 +

2P

N

)
,

C(a, a, 1) =
1

2
log

(
1 +

P

N

)
,

C(a, a,−1) =∞.

The above result make sense. Indeed when ρ = 0, we get Y = 2aX + a(Z1 + Z2), and we see that the SNR is 2P/N
independently of a. On the other hand when ρ = 1, this essentially means that Z1 = Z2, and thus Y = 2aX + 2aZ1,
which implies that the SNR is P/N independently of a (this is true also if a 6= b). When ρ = −1, and a = b we see
that the capacity is infinite, which makes sense as in this case Z1 = −Z2, and thus summing up Y1 and Y2 cancels the
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noise, so unbounded amount of information can be transmitted.

c) What is the best filter in the sense of maximizing the capacity, i.e., solve maxa,b C(a, b, ρ), where the maximization is
over all a, b ∈ R. Explain your result. (You may use the inequality (a+b)2

a2+b2+2abρ ≤
2

1+ρ , for any a, b ∈ R and ρ ∈ [−1, ].)
Solution:
We want to solve the following optimization problem:

max
a,b∈R

1

2
log

(
1 +

(a+ b)2

a2 + b2 + 2abρ

P

N

)
.

Since log(·) is monotonically increasing we can focus on the term inside the logarithm. Accordingly, taking partial
derivatives with respect to a and b, we get that the optimal solution appears on a = b. In this case we get

max
a,b∈R

1

2
log

(
1 +

(a+ b)2

a2 + b2 + 2abρ

P

N

)
=

1

2
log

(
1 +

2

1 + ρ

P

N

)
.

To see that this is indeed the maximum, we can use the following inequality:

(a+ b)2

a2 + b2 + 2abρ
≤ 2

1 + ρ
,

for any ρ ∈ [−1, 1 ], and a, b ∈ R. The above result implies that choosing a = b, and an arbitrary a 6= 0 is optimal,
independently of ρ. Indeed, since all we want to do is to maximize the SNR, it is known that this can be achieved by
the matched filter, which in turn coincides with the above result. Given a = b, it makes sense that a 6= 0 can be chosen
arbitrarily as it does not affect the SNR (both the signal and the noise are multiplied by the same coefficient a).

2) True or False on entropy identities (24 Points):

a) True/False: For any discrete random variables, X1, X2, and X3,

H(X1, X2, X3) ≤ 1

2
[H(X1, X2) +H(X2, X3) +H(X3, X1)] .

Solution: True.
Using chain rule, H(X1, X2, X3) can be expanded in the following two way

2H(X1, X2, X3) =H(X1, X2) +H(X3|X1, X2) +H(X2, X3) +H(X1|X2, X3)

≤H(X1, X2) +H(X2, X3) +H(X3|X1, X2) +H(X1)

≤H(X1, X2) +H(X2, X3) +H(X3|X1) +H(X1)

=H(X1, X2) +H(X2, X3) +H(X3, X1).

b) True/False: For any discrete random variables, X1, X2, and X3,

H(X1, X2, X3) ≥ 1

2
[H(X1, X2|X3) +H(X2, X3|X1) +H(X3, X1|X2)] .

Solution: True.

H(X1, X2|X3) +H(X2, X3|X1) +H(X3, X1|X2) = H(X1, X2|X3) +H(X3) +H(X2, X3|X1) +H(X1)

+H(X3, X1|X2) +H(X2)− [H(X1) +H(X2) +H(X3)]

= 3H(X1, X2, X3)− [H(X1) +H(X2) +H(X3)]

≤ 3H(X1, X2, X3)−H(X1, X2, X3)

= 2H(X1, X2, X3).

c) True/False: For two probability distributions, pXY and qXY , that are defined on X × Y , the following holds:

D(pXY ||qXY ) ≥ D(pX ||qX).

Solution: True.
Consider the definition of the conditional divergence,

D
(
PX|Z

∣∣∣∣QX|Z∣∣PZ) =
∑

(x,z)∈X×Z

PX,Z(x, z) log

(
PX|Z(x|z)
QX|Z(x|z)

)
.

We recall that

D
(
PX,Y

∣∣∣∣QX,Y ) = D
(
PX
∣∣∣∣QX)+D

(
PY |X

∣∣∣∣QY |X ∣∣PX),
where

D
(
PY |X

∣∣∣∣QY |X ∣∣PX) =
∑
x∈X

PX(x)D
(
PY |X=x

∣∣∣∣QY |X=x

)
,
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which is non-negative. We conclude that

D(pXY ||qXY ) ≥ D(pX ||qX).

d) Given are two channels with identical inputs and outputs alphabets (|Xi| = |Yi| for i = 1, 2). Their capacities are denoted
by C1 and C2, respectively, and the capacity of their cascaded version is C12 or C21 depending on the channel ordering.

i) True/False: If |Xi| = |Yi| = 2 for all i, then C12 = C21 = 0 if and only if C1 = 0 or C2 = 0.
Solution: True.
One direction of the proof is trivial. The capacity of a channel is zero if and only if X ⊥⊥ Y for any input distribution.
For a binary channel with transition probabilities, say α and β, this is translated to the fact that the capacity is zero if
and only if α+ β = 1. Now, the transition probabilities of the channels are denoted by p(y = 0|x = 1), p(y = 1|x =
0) = (α, β) and (δ,γ), and the cascaded channel parameters are (ᾱγ + αδ̄, βγ̄ + β̄δ). It is not difficult to check that
the capacity of the cascaded channel is 0 if and only if α+ β = 1 or δ + γ = 1.

ii) True/False: If |Xi| = |Yi| = 3 for all i, then C12 = 0 if and only if C1 = 0 or C2 = 0.
Solution: False.
Consider the following channels:
First channel: p(y = 0|x = 0) = p(y = 1|x = 1) = p(y = 1|x = 2) = 1. Second channel: p(y = 0|x = 0) = p(y =
0|x = 1) = p(y = 2|x = 2) = 1. The capacity of each channel is 1 bit but the capacity of their cascaded version (in
the above ordering) is 0.

3) Shannon code (24 Points): Consider the following method for generating a code for a random variable X which takes on m
values {1, 2, . . . ,m} with probabilities p1, p2, . . . , pm. Assume that the probabilities are ordered so that p1 ≥ p2 ≥ · · · ≥ pm.
Define

Fi =

{
0 i = 1∑i−1
k=1 pk i = 2, 3, . . . ,m+ 1

, (1)

namely, the sum of the probabilities of all symbols less than i. Then the codeword for i is the number Fi ∈ [0, 1] rounded off
to li bits, where li = dlog 1

pi
e.

a) True/False

i) The code constructed by this process is prefix-free.
Solution: True.
By the choice of li, we have

2−li ≤ pi < 2−(li−1). (2)

Thus Fj , j > i differs from Fi by at least 2−li , and will therefore differ from Fi is at least one place in the first
li bits of the binary expansion of Fi. Thus the codeword for Fj , j > i, which has length lj ≥ li, differs from the
codeword for Fi at least once in the first li places. Thus no codeword is a prefix of any other codeword.

ii) The average length L satisfies H(X) ≤ L < H(X) + 1.
Solution: True.
Since li = dlog 1

pi
e, we have

log
1

pi
≤ li < log

1

pi
+ 1 (3)

which implies that
H(X) ≤ L =

∑
pili < H(X) + 1. (4)

b) Construct the code for the probability distribution (0.5, 0.25, 0.125, 0.125).
Solution:
We build the following table

Symbol Probability Fi in decimal Fi in binary li Codeword
1 0.5 0.0 0.0 1 0
2 0.25 0.5 0.10 2 10
3 0.125 0.75 0.110 3 110
4 0.125 0.875 0.111 3 111

The Shannon code in this case achieves the entropy bound (1.75 bits) and is optimal.
c) True/False For dyadic distribution, i.e. ∀i : pi = 2−li for some positive integer l′is, the average length for this code

matches H(X).
Solution: True.
Without loss of generality, assume

p1 ≥ p2 ≥ · · · ≥ pm

l1 ≤ l2 ≤ · · · ≤ lm
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and by construction of the Shannon codes, li = dlog 1

pi
e = log 1

pi
and thus the expected code length is

E[l(X)] =

m∑
i=1

pi · li (5)

=

m∑
i=1

pi · log
1

pi
(6)

=H(X). (7)

4) Mixture of exponential distributions and EM (28 Points): A mixture of exponential distributions is defined by a vector of
parameters λ = [λ1, . . . , λk] and a latent discrete random variable Z which denotes the number of the exponential distributions
hence Z ∈ {1, 2, ..., k}. The probability density function (pdf) of the mixture is:

P (x;λ) =

K∑
j=1

P (Z = j)f(x|z = j;λj) (8)

where f(x|z = j;λj) = λj exp (−λj · x), for x ≥ 0, is the exponential pdf with parameter λj .

a) Assume K = 1, namely, f(x;λ) = λ exp (−λx), for x ≥ 0. Given a set of observations {xi}ni=1 drawn i.i.d from f(x;λ),
find the maximum likelihood estimator (MLE) of λ.
Solution:
The joint p.d.f of the observations is

∏m
i=1 f(xi;λ). Furthermore, since log is a monotonic increasing function on (0,∞),

we can take λ̂ that maximizes
∑m
i=1 log f(x;λ). Therefore:

∂

∂λ

∑
i

log λ exp−λxi =
∑
i

(
1

λ
− xi) (9)

=
m

λ
−

m∑
i=1

xi (10)

=0 (11)

Therefore,

λ̂(MLE) =
m∑m
i=1 xi

and the second derivative is
∂2

∂λ2

∑
i

log λ exp−λxi =− m

λ2

which implies that this is a maxima.
b) The exponential distribution is used to model a continuous time interval between two Poisson events. The average rate of

the Poisson events is denoted by λ, and the exponential distribution determines how much time will pass until the arrival
of a new event.
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The figure above has the pdf f(x|z = j;λj) for λj = 1 and for λj = 2. Draw the mixture of these two distributions,
where PZ(1) = PZ(2) = 0.5.
Solution:
The p.d.f is the average between the two given density functions.
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Mixture

c) Recall from class that the EM algorithm aims to maximize the log-likelihood function: The E-step at iteration (t):

w(i, j) , Q
(t)
i (j) =PZ|X;θ

(
Z = j|X = xi; θ

(t−1)
)

(12)

where θ(t−1) are the parameters of the exponential mixture model at iteration t− 1. The M-step at iteration (t):

θ(t) = arg max
θ

n∑
i=1

E
Q

(t)
Zi

[log(PX,Z(xi, zi; θ))] (13)

= arg max
θ

n∑
i=1

K∑
j=1

Q
(t)
i (j) logP (xi, z = j; θ) (14)

You are given training samples {xi}ni=1 from a mixture of exponential distributions. Write explicitly the estimation
formulas of the EM algorithm for exponential mixtures, using the training samples.
Solution:
We identify θ as the parameters of the distribution, λ and {φ}j = 1K . Denote

φ(j) =P̂Z(j)

For the expectation step, use the given parameters φ and λ to calculate

Qi(j) =
φ(j)λj exp−λjxi∑K
l=1 φ(l)λl exp−λlxi

. (15)

Then, in the maximization step, we consider Qi(j) as constant and maximize over φj and λ. Consider the following
derivation

θ̂
(a)
= arg max

φj ,λj

m∑
i=1

K∑
j=1

Qi(j)(log φjλj exp−λjxi) (16)

= arg max
φj ,λj

m∑
i=1

K∑
j=1

Qi(j)(log φj + log λj − λjxi) (17)

where (a) follows from (14). To maximize w.r.t. φ(j), we need to maximize
∑m
i=1

∑K
j=1Qi(j) log φj under the constraint

that
∑K
j=1 φj = 1. We construct the Lagrangian

L(φ) =

m∑
i=1

K∑
j=1

Qi(j) log φj + α(

K∑
j=1

φj − 1) (18)

Taking derivating and finding φj results in

φj = −
∑m
i=1Qi(j)

α
(19)
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Using the constraint on the sum, we can easily find that

−αφj =

m∑
i=1

Qi(j) (20)

⇒ −α =

m∑
i=1

K∑
j=1

Qi(j) (21)

=

m∑
i=1

1 = m (22)

Therefore,

φ(j) =
1

m

∑
i

Qi(j)

For the parameter λ, note that

∂

∂λj

∑
i

K∑
j=1

Qi(j)(log λj − λjxi) =
∑
i

Qi(j)(
1

λj
− xi) (23)

therefore, by taking maximum over λ we have

λj =

∑
iQi(j)∑
iQi(j)xi

(24)

for j = 1, . . .K.
d) Assume that you have 10 agents in a company that provide services via telephone. Whenever an agent completes a

service call, he fills a service form in the company’s database and the duration of the call is recorded. After each
call, the agent immediately answers a new call. The duration of a service call may depend on the costumer’s need,
the agent and, the day of the week. Hence, for each agent, these calls are modeled by a mixture of exponential distributions.

You are given a train data S = {(xi, yi)}ni=1 where xi is the duration of the i-th call and yi ∈ {1, . . . , 10} is
the agent number. You are also given a test data T = {xj}Lj=1.

Write a pseudo code that fits a mixture of K exponential distributions for each agent in the company, using T
iterations of expectation maximization. Then, it assigns an agent number for each one of the test samples.
Solution:
Let K denote the number of exponential distributions in a mixture, T the number of iterations in the EM algorithm, X
a set of samples and Y a set of labels (corresponding to the samples). Then the algorithm can be summarized in the
following pseudo-code (next page):



7Algorithm 1 Exponential mixtures for multiclass

1: function FITMIXTURE(X,K,T)
2: ˆλ, φ← initial values
3: for t = 1, . . . , T do
4: for j = 1, . . . ,K do
5: w(j, i) =

φ(j)λj exp
−λjxi∑K

l=1 φ(l)λl exp
−λlxi

for each i ∈ {1, . . . ,m}

6: for j = 1, . . . ,K do
7: φ(j)← 1

m

∑
i w(j, i)

8: λj ←
∑m
i=1 w(j,i)∑
i w(j,i)xi

return λ, φ
9: function TRAIN(X,Y,K,T)

10: for l = 1, . . . , 10 do
11: x(l) ← all xi for i s.t. yi = l
12: (λ(l), φ(l)) =FitMixture (x(l),K, T )

13: θ ← {(λ(l), φ(l))}10l=1 return θ

14: function TEST(X, θ)
15: {(λ(l), φ(l))}10l=1 ← θ
16: for x in X do
17: for l = 1, . . . , 10 do
18: P (x|l) =

∑K
j=1 φ

(l)(j)λ
(l)
j exp−λ

(l)
j x

19: ŷ(x) = arg maxl P (x|l)
20: procedure RUNALGORITHM(Xtrain, Ytrain, Xtest,K, T )
21: θ ← Train(Xtrain, Ytrain,K, T )
22: Ŷtest ← Test(Xtest, θ)

Remark: The decision criteria here is according to maximum likelihood.

Good Luck!


