
Introduction to Information and Coding Theory August 28, 2016
(Prof. Permuter Haim, Mr. Oron Sabag and Mr. Ido Gattegno)

Final Exam - Moed B (Solutions)
Total time for the exam: 3 hours!

Important: For True / False questions, copy the statement to your notebook and write clearly true or false. You should
prove the statement if true, and provide counterexample otherwise.

1. True or False (20 Points).

(a) If X − Y − Z −W is a Markov chain, then X − Y − Z and Y − Z −W are Markov chains.
Solution: True.
Since X − Y − Z −W is a Markov chain, then we readily notice that:
1) P (z|x, y) = P (z|y), thus X − Y − Z is a Markov chain.
2) P (w|y, z) = P (w|z), thus Y − Z −W is a Markov chain.

(b) If X − Y − Z and Y − Z −W are Markov chains, then X − Y − Z −W is a Markov chain.
Solution: False.
Let (X,Y, Z) be mutually independent, and set W = X . Then, obviously, X − Y − Z and Y − Z −W hold, but
X − Y − Z −W , which reduces to X − Y − Z −X , is wrong.

(c) If PXY ZW (x, y, z, w) = PX(x)PY |X(y|x)PZW (z, w), then X − Y − (Z,W ) is a Markov chain.
Solution: True.
Due to the fact that PXY ZW (x, y, z, w) = PXY (x, y)PZW (z, w), we may conclude that (X,Y ) ⊥⊥ (Z,W ). Thus,
I(X,Y ;Z,W ) = 0, from which we can deduce that I(Y ;Z,W |X) = 0, as required.

(d) If X ⊥⊥ Y and Y ⊥⊥ Z, then X ⊥⊥ Z.
Solution: False.
Take Z = X .

(e) If the conditional distribution PX|Y Z(x|y, z) is a deterministic function of (x, y) ∈ X × Y, then X − Y − Z is a
Markov chain.
Solution: True.
Since PX|Y Z(x|y, z) is a deterministic function of (x, y) ∈ X × Y, then for any z0 ∈ Z we have

PX|Y (x|y) =
∑

z∈Z

PZ|Y (z|y)PX|Y Z(x|y, z) (1)

= PX|Y Z(x|y, z0)
∑

z∈Z

PZ|Y (z|y) (2)

= PX|Y Z(x|y, z0). (3)

Therefore X − Y − Z is a Markov chain.

2. Markov with random index (10 points) Let A1, A2 ∈ A, B1, B2 ∈ B, and C ∈ C, be such that A1 − B1 − C and
A2 −B2 − C are Markov chains. Also, let i(C) be a binary (deterministic) function of C that emits 1 or 2.

(a) Ai(C) −Bi(C) − C holds if PA1,B1(a, b) = PA2,B2(a, b) for all (a, b) ∈ A× B.
Solution: True.
Since PA1,B1(a, b) = PA2,B2(a, b) for every (a, b) ∈ A× B,

PA1(a) =PA2(a)

PB1(b) =PB2(b)

PA1|B1
(a|b) =PA2|B2

(a|b) = f(a, b). (4)

Consider

PAi(C),Bi(C),C(a, b, c) =PAi(C)|Bi(C),C(a|b, c)PBi(C),C(b, c)

(a)
=PAi(c)|Bi(c),C(a|b, c)PBi(C),C(b, c)

(b)
=PAi(c)|Bi(c)

(a|b)PBi(C),C(b, c)

(c)
=f(a, b)PBi(C),C(b, c)
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where:
(a) - follows since C = c is given,
(b) - follows since Ai(c) −Bi(c) − C is Markov for every c ∈ C,
(c) - since PAi(c)|Bi(c)

(a|b) = f(a, b) for every c ∈ C.

Therefore, PAi(C)|Bi(C),C(a|b, c) = f(a, b), and by Question 1(e) , Ai(C) −Bi(C) − C is a Markov chain.

(b) Ai(C) −Bi(C) − C holds if PA1,B1(a, b) 6= PA2,B2(a, b) for some (a, b) ∈ A× B.
Solution: False.
Consider the following example, where A1 = 1, A2 = 0, B1 = B2 = 0, with probability 1, and let C ∼ Ber(α), for
0 ≤ α ≤ 1. Also, assume that (A1, B1, C) and (A2, B2, C) are mutually independent, and thus

A1 −B1 − C,

A2 −B2 − C,

are Markov chains. Now, let i(C)
△
= C + 1, and define,

Ai(C)
△
=

{

A1, if i(C) = 1

A2, if i(C) = 2

=

{

1, if C = 0

0, if C = 1
,

and

Bi(C)
△
=

{

B1, if i(C) = 1

B2, if i(C) = 2

= 0.

It is clear that Ai(C) −Bi(C) − C is not Markov, since Bi(C) is deterministic and Ai(C) depends on C.

3. Erasure channel after discrete memoryless channel (20 Points):

Assume a discrete memoryless channel, (X ,Y, p(y|x)) with capacity, C1.
The output of this channel serves as an input to an erasure channel with |Y| inputs and erasure probability ǫ.
What is the capacity of the overall channel?
Solution: We will show that the capacity, C, of the overall channel is C = (1 − ǫ) · C1. Indeed, since the overall
channel is memoryless, we saw in the lectures that its capacity is given by

C = max
Px

I(X ;Z). (5)

Define,

Θ
△
=

{

1 if z ∈ Y

0 if z = e
.

Then,

Pr(Θ = 1) = Pr(Z = Y ) = 1− ǫ,

Pr(Θ = 0) = Pr(Z = e) = ǫ. (6)

Now, due to the fact that Θ is deterministic function of Z, we get

I(X ;Z) = I(X ;Z,Θ)

= H(X)−H(X |Z,Θ)

= H(X)− Pr(Θ = 1) ·H(X |Z,Θ = 1)− Pr(Θ = 0) ·H(X |Z,Θ = 0)

= H(X)− (1− ǫ) ·H(X |Y )− ǫ ·H(X |Z = e)

= H(X)− (1− ǫ) ·H(X |Y )− ǫ ·H(X)

= (1− ǫ) · I(X ;Y ). (7)
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Therefore, the capacity of the overall channel is:

C = max
Px

I(X ;Z)

= (1 − ǫ) ·max
Px

I(X ;Y )

= (1 − ǫ) · C1, (8)

as claimed.

4. Cross entropy (25 Points):

Often in Machine learning, cross entropy is used to measure performance of a classifier model such as neural network.
Cross entropy is defined for two PMFs PX and QX as

H(PX , QX)
△
= −

∑

x∈X

PX(x) logQX(x).

In a shorter notation we write as

H(P,Q)
△
= −

∑

x∈X

P (x) logQ(x).

(a) Copy each of the following relations to your notebook and write true ir false and provide a proof/disproof.

i. 0 ≤ H(P,Q) ≤ log |X | for all P,Q.
Solution: False.
First, note that H(P,Q) can be rewritten as

H(P,Q) = −
∑

x∈X

P (x) logQ(x)

=
∑

x∈X

P (x) log
P (x)

Q(x)
−
∑

x∈X

P (x) logP (x)

= D(P ||Q) +HP (X). (9)

Thus, it obvious that H(P,Q) ≥ 0. However, if we let Punif be the uniform measure on X , then

H(Punif, Q) = D(Punif||Q) +HPunif
(X)

= D(Punif||Q) + log |X |

≥ log |X |, (10)

due to the fact that D(Punif||Q) ≥ 0. Now, because D(Punif||Q) = 0 if and only if Q = Punif, by taking
any Q 6= Punif, we will get that D(Punif||Q) > 0, which means that H(Punif, Q) > log |X | for any Q 6= Punif,
contradicting the claim that H(P,Q) ≤ log |X | for all P,Q.

ii. minQ H(P,Q) = H(P, P ) for all P .
Solution: True.
This follows from the simple observation that D(P ||Q) ≥ 0 for all (P,Q), and thus

H(P,Q) = D(P ||Q) +HP (X)

≥ HP (X), (11)

with equality if and only if Q = P .

iii. H(P,Q) is concave in the pair (P,Q).
Solution: False.
If H(P,Q) is concave in the pair (P,Q) then it must be concave in P and Q separately. However, it easy to
see that H(P,Q) is convex function in Q (for fixed P ) because − log(·) is convex.

iv. H(P,Q) is convex in the pair (P,Q).
Solution: False.
If P = Q, then H(P,Q) = HP (X), which is a concave function of P .

(b) Find an operation problem, such as in compression, communication (or even other fields) where the fundamental
solution involve the cross entropy measure H(P,Q). State the operational problem mathematically in less than
half a page, and state the solution as a theorem. Provide a short proof to the theorem.
Solution: Cross entropy is the expected length of a code, when using the distribution Q to encode a source with
distribution P. For example, consider the Shannon code length L(x) = ⌈log 1/Q(x)⌉. However, consider the case
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where the true p.m.f. is P . Therefore, one should expect that we will not achieve an expected (optimal) length of
H(P ). Instead, we will get

E(L(X)) =
∑

x

P (x)

⌈

log
1

Q(x)

⌉

≤ 1 +
∑

x

P (x) log
1

Q(x)

= 1 +H(P,Q), (12)

and similarly

E(L(X)) ≥ H(P,Q). (13)

Hence,

H(P,Q) ≤ E(L(X)) ≤ 1 +H(P,Q). (14)

5. Fast fading Gaussian channel (25 points):

Consider a Gaussian channel given by Yi = GiXi + Zi, where Zi
i.i.d
∼ N (0, N) and Gi

i.i.d
∼ PG.

M XiEnc

Gi Zi

Dec
Yi M̂

Figure 1: Fast fading Gaussian channel

The gains and noise are independent, i.e., {Zi} ⊥⊥ {Gi}, and

PG(g) =

{

0.5 if g = 1

0.5 if g = 2

(a) Assume that the states are known at the decoder only, and there is an input constraint P .

i. What is the capacity formula?
Solution: As we saw in the lectures, the capacity is given by

C1 = sup
PX

I(X ;Y |G) (15)

where the maximum is taken over all X-distributions such that E(X2) ≤ P .

ii. Find the optimal inputs distribution in the formula you gave.
Solution: We show in the next item that the optimal input is X ∼ N (0, P ).

iii. Compute the capacity as a function of N and P .
Solution: The states are known only to the decoder, and thus we may assume that X ⊥⊥ G. We have

I(X ;Y |G) = h(Y |G)− h(Y |X,G)

= h(Y |G)− h(Y −GX |X,G)

= h(Y |G)− h(Z|X,G)

(a)
= h(Y |G) − h(Z)

= P (G = 1) · h(Y |G = 1) + P (G = 2) · h(Y |G = 2)− h(Z)

=
1

2
· h(X + Z|G = 1) +

1

2
· h(2X + Z|G = 2)− h(Z)

(a)
=

1

2
· h(X + Z) +

1

2
· h(2X + Z)−

1

2
log(2πeN) (16)

where (a) follows from the fact that Z ⊥⊥ (X,G). Now, the maximal entropy lemma implies

h(X + Z) ≤
1

2
log(2πe(P +N)), (17)

h(2X + Z) ≤
1

2
log(2πe(4P +N)), (18)

4



with equality if and only if X ∼ N (0, P ). Thus,

I(X ;Y |G) ≤
1

2
log

(

√

(P +N)(4P +N)

N

)

, (19)

again, with equality if and only if X ∼ N (0, P ). Therefore

C1 = max
PX

I(X ;Y |G)

=
1

4
log

(

1 +
P

N

)

+
1

4
log

(

1 +
4P

N

)

. (20)

(b) i. Now the states are known both to the encoder and decoder, and the input constraint is P .

A. What is the capacity formula?
Solution: Again, as we saw in the lectures, the capacity in this case is given by

C2 = sup
PX|G

I(X ;Y |G) (21)

where the maximum is over all distributions PX|G which satisfy the power constraint.

B. Compute the capacity as a function of N and P .
You can write your answer as an optimization problem.
Solution: As before, we get:

I(X ;Y |G) =
1

2
· h(X + Z|G = 1) +

1

2
· h(2X + Z|G = 2)−

1

2
log(2πeN). (22)

Define the functional:

var(X |W = w)
△
= E(X2|W = w). (23)

Then, let var(X |G = i)
△
= Pi for i = 1, 2. By the power constraint, we have that P1 + P2 ≤ 2P .

Accordingly, due to the maximal entropy lemma, we get

h(X + Z|G = 1) ≤
1

2
log(2πe(P1 +N)) (24)

h(2X + Z|G = 2) ≤
1

2
log(2πe(4P2 +N)), (25)

were both inequalities are achieved if X |G = i is Gaussian with variance Pi. Hence,

I(X ;Y |G) ≤
1

2
log

(

√

(P1 +N)(P2 +N)

N

)

. (26)

Therefore, the capacity is given by

C2 = sup
(P1,P2):P1+P2≤2P

1

2
log

(

√

(P1 +N)(4P2 +N)

N

)

(27)

= sup
(P1,P2):P1+P2≤2P

{

1

4
log

(

1 +
P1

N

)

+
1

4
log

(

1 +
4P2

N

)}

. (28)

Remark : This optimization problem can be solved by Water-filling.

ii. Assume

PG(g) =

{

0.5 if g = 0

0.5 if g = 1
.

Repeat 5(b)i.
Solution: As before we will get

I(X ;Y |G) =
1

2
· h(Z|G = 0) +

1

2
· h(X + Z|G = 1)−

1

2
log(2πeN)

=
1

2
· h(X + Z|G = 1)−

1

4
log(2πeN). (29)
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Also,

h(X + Z|G = 1) ≤
1

2
log(2πe(P1 +N)). (30)

Thus,

C3 = sup
(P1):P1≤2P

1

4
log

(

P1 +N

N

)

=
1

4
log

(

1 +
2P

N

)

. (31)

Intuition: To achieve (31) the transmitter will not send any data when G = 0 (because in this case our
information will be lost), but rather all the data will be transmitted when G = 1 (and with power 2P to
satisfy the power constraint). Now, when G = 1, the channel reduces to a simple Gaussian channel, Y = X+Z,
with signal to noise ratio of 2P/N , namely, we can achieve a rate of

1

2
log

(

1 +
2P

N

)

.

However, since with high probability, G = 1 half of the time, we need to multiply the last result by half, and
we get the quarter factor in (31).

Good Luck!
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