Final Exam

Total time for the exam: 3 hours!

1) True or False (20 Points):

Copy each relation to your notebook and write true or false. Then, if it's true, prove it. If it is false give a counterexample or prove that the opposite is true.
a) Let X, Y be a pair of random variables jointly distributed according to $P_{X, Y}$. For every $y \in \mathcal{Y}$ we have

$$
H(X \mid Y=y) \leq H(X)
$$

b) Consider the channel in Fig. 1 where Z is a Gaussian noise with power N and a is a deterministic constant. There is a power constraint on X such that $E\left[X^{2}\right] \leq P$. The capacity between X and Y is denoted by C. Is $C=\frac{1}{2} \log \left(1+\frac{P}{N}\right)$?

Fig. 1: Cascaded AWGN channel.
c) Consider the channel in Fig. 2 where Z is a Gaussian noise with power N. There is a power constraint on X such that $E\left[X^{2}\right] \leq P$. The capacity between X and Y is denoted by C. Is $C=\frac{1}{2} \log \left(1+\frac{P}{N}\right)$?

Fig. 2: AWGN channel.
2) Cascaded additive modulo-2 channels with dependent noise (20 Points)

Consider the additive modulo-2 channel in Fig. 3.

Fig. 3: Cascaded additive modulo-2 channels.
The input to the channel, X, is binary. The noise N_{1} is distributed with $\operatorname{Bernoulli}(\epsilon), \epsilon<\frac{1}{2}$. If $N_{1}=1$, the noise N_{2} is distributed Bernoulli $\left(\alpha_{1}\right)$. If $N_{1}=0$, the noise N_{2} is distributed with Bernoulli $\left(\alpha_{2}\right) . N_{1}$ and N_{2} are independent of X. User 1 observes the output $Y_{1}=X+N_{1}$. The capacity of the channel between X and Y_{1} is denoted by C_{1}. User 2 observes the output $Y_{2}=X+N_{1}+N_{2}$. The capacity of the channel between X and Y_{2} is denoted by C_{2}.
a) Find the capacities C_{1} and C_{2} as functions of $\epsilon, \alpha_{1}, \alpha_{2}$.
b) Find the constraints on $\epsilon, \alpha_{1}, \alpha_{2}$ such that:
i) $C_{1}=C_{2}$.
ii) $C_{1}<C_{2}$
iii) $C_{1}>C_{2}$
c) We now introduce a 3 rd user which obtains both $\left(Y_{1}, Y_{2}\right)$. The capacity of the channel between X and $\left(Y_{1}, Y_{2}\right)$ is C_{3}. Is it true that $C_{1}+C_{2} \geq C_{3}$? If not, give a counterexample.

3) Network Coding for Broadcast Channel (30 Points)

Consider the network in Fig. 4 where a source S wants to send a file consisting of M parts from the set $\mathcal{M}=\{1, \ldots, M)$ to the receivers $\tau=\left\{t_{1}, t_{2}\right\}$. Each receiver $t_{i}, i \in\{1,2\}$ knows a subset of messages $\mathcal{M}_{i} \subseteq \mathcal{M}$. The source S knows the subsets \mathcal{M}_{i}. At each time slot the source S is able to transmit one packet.
a) What is the minimum number of transmissions required by S such that all receivers can decode the file? prove it.
b) Suggest a simple coding scheme that achieves the upper bound from (a).
c) We now assume that $|\tau|>2$ (there are more than two receivers in the network), what is the minimum number of transmissions required by S ?
d) Provide a coding scheme that achieves the upper bound from (c).

Fig. 4: A network that describes a broadcast channel.
4) Conditional Information Divergence ($\mathbf{3 0}$ Points)
a) Let X, Z be random variables jointly distributed according to $P_{X, Z}$. We define the conditional informational divergence as follows:

$$
D\left(P_{X \mid Z}| | Q_{X \mid Z} \mid P_{Z}\right)=\sum_{(x, z) \in \mathcal{X} \times \mathcal{Z}} P_{X, Z}(x, z) \log \left(\frac{P_{X \mid Z}(x \mid z)}{Q_{X \mid Z}(x \mid z)}\right)
$$

With respect to this definition, write each of the following relations to your notebook and write true or false:
For any pair of random variables A, B that are jointly distributed according to $P_{A, B}$,
i)

$$
D\left(P_{A, B} \| Q_{A, B}\right)=D\left(P_{A} \| Q_{A}\right)+D\left(P_{B \mid A} \| Q_{B \mid A} \mid P_{A}\right)
$$

ii)

$$
D\left(P_{A, B}| | P_{A} P_{B}\right)=D\left(P_{B \mid A}| | P_{B} \mid P_{A}\right)
$$

iii)

$$
I(A ; B)=D\left(P_{B \mid A}| | P_{B} \mid P_{A}\right)
$$

iv)

$$
D\left(P_{A \mid B} \| Q_{A \mid B} \mid P_{B}\right)=\sum_{b \in \mathcal{B}} P_{B}(b) D\left(P_{A \mid B=b} \| Q_{A \mid B=b}\right)
$$

b) Consider the setting in Fig. 5.

Fig. 5: Source coding with side information.
We would like to compress the source sequence X^{n} losslessly using a prefix code with side information Z^{n} which is available to the encoder and the decoder. The sources $\left(X^{n}, Z^{n}\right)$ are distributed i.i.d. according to $P_{X, Z}$ and that all the distribution and conditional distributions are dyadic (i.e., P_{X} is dyadic if $P_{X}(x)=2^{-i}$, for some i, for all $x \in \mathcal{X}$). We denote the average number of bits per symbol needed to compress the source X^{n} as L.
i) What is the minimal L ?
ii) Although the distribution of $\left(X^{n}, Z^{n}\right)$ is $P_{X, Z}$, the distribution that is used design the optimal prefix code is $Q_{X \mid Z} P_{Z}$. What is the actual L (average bits per symbol) of this code?
iii) Now, the distribution that is used to design the prefix code is $Q_{X, Z}$. What is the actual L now?

