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Solution for Moed A 2014

1) True or False

a) False. For example:

Y \X 0 1

0 0.25 0.25

1 0.5 0

For this distribution we can calculateHb(0.25) = H(X) < H(X |Y = 0) = 1.

b) True. For the converse, if multiplying bya would increase the capacity then we would use it in the point

to point channel. To achieve, we divide bya and apply the decoding procedure as in the point to point

channel.

c) True. This can be done as in the previous question. Anotherapproach is by noting that the function(·)3

is a bijective function and therefore by havingY we indeed can recover̃Y and:

I(X ; Ỹ ) = H(Ỹ )−H(Ỹ |X)

= H(Ỹ , Y )−H(Y, Ỹ |X)

= H(Y )−H(Y |X)

= I(X ;Y )

and thusmaxp(x) I(X ;Y ) = maxp(x) I(X ; Ỹ ) = 1
2 log(1 + SNR).

2) Cascaded Additive modulo-2 with dependent noise

a) The capacity of the first channel is straightforward and equal toC1 = 1−Hb(ǫ).

To calculate the capacityC2 betweenX andY2 we note that the noise betweenX andY2 is N1 +N2.

Now, we have a simple point to point channel with this noise. The distribution of the noise isN1+N2 ∼

Bern(ǫᾱ1 + ǭα2). Therefore, the capacity is:

C2 = 1−Hb(ǫᾱ1 + ǭα2)

b) All relations can occur, here are some examples:

i) For C1 = C2, substituteǫ = 0, α2 = 0. It then follows thatC1 = C2 = 1. We are trying to produce

two clean channels. The first channel is byǫ = 0 and thereforeY1 = X . Now whenN1 is equal to

zero we only need to make sure thatN2 does not changeC2. This is done by settingα2 = 0. (α1

can take any value sinceN2 6= 1)
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ii) For C1 < C2, substituteǫ = 1
3 , α1 = 1, α2 = 0. It then follows thatC1 = 1 −Hb(

1
3 ) andC2 = 1.

The idea is to correct the noise thatN1 induces. We make sure thatN1 + N2 = 0 and therefore

C2 = 1. ǫ can take any value different from zero.

iii) For C1 > C2, substituteǫ = 1
3 , α1 = 1

2 , α2 = 1
2 . It then follows thatC1 = 1 −Hb(

1
3 )andC2 = 0.

This case is trivial, there are many examples to achieve this.

c) We begin with calculating the capacity of the third user,C3 = maxp(x) I(X ;Y1, Y2):

I(X ;Y1, Y2) = H(Y2, Y1)−H(Y2, Y1|X) (1)

= H(Y2, Y1)−H(Y2|Y1, X)−H(Y1|X) (2)

= H(Y2, Y1)−H(Y2|Y1, X,N1)−H(N1) (3)

= H(Y2, Y1)−H(X +N1 +N2|Y1, X,N1)−H(N1) (4)

= H(Y2, Y1)−H(N2|Y1, X,N1)−H(N1) (5)

= H(Y2, Y1)−H(N2|N1)−H(N1) (6)

Symmetry inH(Y2, Y1) applies that the maximum is attained forp(x = 0) = 0.5. Then it follows

immediately thatH(Y1) = 1, and H(Y2|Y1) = 0.5H(Y2|Y1 = 0) + 0.5H(Y2|Y1 = 1). We try to

minimizeC1 by settingǫ = 0.5 and thereforeC1 = 0.

We calculate the termH(Y2|Y1) for ǫ = 0.5:

H(Y2|Y1) = 0.5Hb(0.5(α1 + α2)) + 0.5Hb(0.5(ᾱ1 + ᾱ2).

Note that at this pointC1 is fixed to zero and the only parameters left areα1 andα2. Let’s write the

terms:

C1 = 1−Hb(0.5) = 0 (7)

C2 = 1−Hb(0.5(ᾱ1 + α2)) (8)

C3 = 1 + 0.5Hb(0.5(α1 + α2)) + 0.5Hb(0.5(ᾱ1 + ᾱ2))− 0.5(Hb(α1) +Hb(α2))−Hb(0.5) (9)

By choosingα1 = 0 andα2 = 0.5, we have thatC3 > C2. There are many more examples.

3) Network Coding for Broadcast Channel

a) The minimum transmissions to nodei is k − |Mi|. The minimum number of transmission required for

the whole system isNtrans = max{k − |M1|, k − |M2|}.

b) To achieve this bound we first transmit all messages in the setMc
1

⋂

Mc
2 directly to the receivers. Then,

we transmit linear combinations of the missing parts. For example, assume that receiver 1 hasM1 and

receiver 2 hasM2, then the transmitter will send a linear combination of(M1,M2). One should verify

that by having all combinations, both receivers can recoverthe set of the messagesM. It is sufficient

to work in bitwise XOR over the fieldF2, sinceMi is known at the transmitter for eachi.

c) From the same arguments,Ntrans = maxi{k − |Mi|}.
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d) The answer is the same as in subsectionb only now the algorithm is preformed overτ number of sets.

4) Conditional Information Divergence

a) True or False. All arguments are true.

i)

D
(

PA,B

∣

∣

∣

∣QA,B

)

=
∑

(a,b)∈A×B

PA,B(a, b) log

(

PA,B(a, b)

QA,B(a, b)

)

=
∑

(a,b)∈A×B

PA,B(a, b) log

(

PB|A(b|a)PA(a)

QB|A(b|a)QA(a)

)

=
∑

(a,b)∈A×B

PA,B(a, b)

[

log

(

PB|A(b|a)

QB|A(b|a)

)

+ log

(

PA(a)

QA(a)

)]

= D
(

PB|A

∣

∣

∣

∣QB|A|PA

)

+
∑

(a,b)∈A×B

PA,B(a, b) log

(

PA(a)

QA(a)

)

= D
(

PB|A

∣

∣

∣

∣QB|A|PA

)

+
∑

a∈A

PA(a) log

(

PA(a)

QA(a)

)

∑

b∈B

PB|A(b|a)

= D
(

PB|A

∣

∣

∣

∣QB|A|PA

)

+
∑

a∈A

PA(a) log

(

PA(a)

QA(a)

)

= D
(

PB|A

∣

∣

∣

∣QB|A|PA

)

+D
(

PA

∣

∣

∣

∣QA

)

ii)

D
(

PA,B

∣

∣

∣

∣PAPB

)

=
∑

(a,b)∈A×B

PA,B(a, b) log(
PA,B(a, b)

PA(a)PB(b)
)

=
∑

(a,b)∈A×B

PA,B(a, b) log(
PB|A(b|a)PA(a)

PA(a)PB(b)
)

=
∑

(a,b)∈A×B

PA,B(a, b) log(
PB|A(b|a)

PB(b)
)

= D
(

PB|A

∣

∣

∣

∣PB |PA

)

iii) This follows from the known relationI(X ;Y ) = D
(

PA,B

∣

∣

∣

∣PAPB)
)

.

iv)

D
(

PA|B

∣

∣

∣

∣QA|B|PB

)

=
∑

(a,b)∈A×B

PA,B(a, b) log(
PA|B(a, b)

QA|B(a, b)
)

=
∑

b∈B

PB(b)
∑

a∈A

PA|B(a|b) log(
PA|B(a, b)

QA|B(a, b)
)

=
∑

b∈B

PB(b)D
(

PA|B=b

∣

∣

∣

∣QA|B=b

)

For the last part we use Shannon-Fano code which is known to beoptimal for a dyadic distribution.
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a) Using Shannon-Fano code, and multiplexing byZ, we have

L =
∑

z∈Z

p(z)
∑

x∈X

p(x|z) log2
1

p(x|z)

=
∑

(x,z)∈X×Z

p(x, z) log2
1

p(x|z)

= H(X |Z)

b) Since we encode withQX|Z , the average length is:

L =
∑

z∈Z

p(z)
∑

x∈X

p(x|z) log2
1

q(x|z)

=
∑

(x,z)∈X×Z

p(x, z) log2
1

q(x|z)

=
∑

(x,z)∈X×Z

p(x, z) log2
p(x|z)

q(x|z)
−

∑

(x,z)∈X×Z

p(x, z) log2 p(x|z)

= D
(

PX|Z

∣

∣

∣

∣QX|Z

∣

∣PZ

)

+H(X |Z)

c) The answer is the same as in the previous question since we still encode withQX|Z .


